Synthesis 2016; 48(02): 256-262
DOI: 10.1055/s-0035-1560392
paper
© Georg Thieme Verlag Stuttgart · New York

A Novel Convenient Synthesis of Pyridinyl and Quinolinyl Triflates and Tosylates via One-Pot Diazotization of Aminopyridines and Aminoquinolines in Solution

Assiya Zh. Kassanova
Department of Biotechnology and Organic Chemistry, National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation   Email: eak@tpu.ru   Email: filimonov@tpu.ru
,
Elena A. Krasnokutskaya*
Department of Biotechnology and Organic Chemistry, National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation   Email: eak@tpu.ru   Email: filimonov@tpu.ru
,
Perizat S. Beisembai
Department of Biotechnology and Organic Chemistry, National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation   Email: eak@tpu.ru   Email: filimonov@tpu.ru
,
Victor D. Filimonov*
Department of Biotechnology and Organic Chemistry, National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation   Email: eak@tpu.ru   Email: filimonov@tpu.ru
› Author Affiliations
Further Information

Publication History

Received: 01 October 2015

Accepted after revision: 04 November 2015

Publication Date:
02 December 2015 (online)


Abstract

The first effective and simple method for the direct one-pot transformation of 2-, 3-, and 4-aminopyridines, 2,6-diaminopyridines, and 2-aminoquinoline into the corresponding pyridinyl and quinolinyl trifluoromethanesulfonates and tosylates in solvents was developed. The procedure involves diazotization of the heterocyclic amines with sodium nitrite in mixed hexane–DMSO or hexane–DMF solutions in the presence of trifluoromethanesulfonic acid or p-toluenesulfonic acid.

Supporting Information

 
  • References

    • 1a Tang Z.-Y, Hu Q.-S. J. Am. Chem. Soc. 2004; 126: 3058
    • 1b Zim D, Lando VR, Dupont J, Monteiro AL. Org. Lett. 2001; 3: 3049
    • 1c Huang X, Anderson KW, Zim D, Jiang L, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 6653
    • 1d Limmert ME, Roy AH, Hartwig JF. J. Org. Chem. 2005; 70: 9364
    • 1e Ogata T, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 13848
    • 1f Pschierer J, Plenio H. Eur. J. Org. Chem. 2010; 2934
    • 1g Lin W, Chen L, Knochel P. Tetrahedron 2007; 63: 2787
    • 1h Sergeev ME, Morgia F, Lazari M, Wang C, van Dam RM. J. Am. Chem. Soc. 2015; 137: 5686
    • 1i Lin C.-P, Florio P, Campi EM, Zhang C, Fredericks DP, Saito K, Jackson WR, Hearn MT. W. Tetrahedron 2014; 70: 8520
    • 2a Savage SA, Smith AP, Fraser CL. J. Org. Chem. 1998; 63: 10048
    • 2b Kim H, Lee K, Lee PH, Kim S. Chem. Commun. 2010; 6341
    • 2c Nicolaou KC, Kiappes JL, Tian W, Gondi VB, Becker J. Org. Lett. 2011; 13: 3924
    • 2d Seganish WM, DeShong Ph. J. Org. Chem. 2004; 69: 1137
    • 2e Hammoud H, Schmitt M, Bihel F, Antheaume C, Bourguignon J.-J. J. Org. Chem. 2012; 77: 417
    • 2f Du G, Moulin E, Jouault N, Buhler E, Guiseppone N. Angew. Chem. Int. Ed. 2012; 51: 12504
    • 2g Maloney KM, Nwakpuda E, Kuethe JT, Yin J. J. Org. Chem. 2009; 74: 5111
    • 2h Bissember AC, Banwell MG. J. Org. Chem. 2009; 74: 4893
  • 3 Wentworth AD, Wentworth P, Mansoor UF, Janda KD. Org. Lett. 2000; 2: 477
  • 4 Tretyakov AN, Krasnokutskaya EA, Gorlushko DA, Ogorodnikov VD, Filimonov VD. Tetrahedron Lett. 2011; 52: 85
  • 5 Krasnokutskaya EA, Kassanova AZ, Estaeva MT, Filimonov VD. Tetrahedron Lett. 2014; 55: 3771
    • 6a Filimonov VD, Trusova ME, Postnikov PS, Krasnokutskaya EA, Lee YM, Hwang HY, Kim H, Ki-Whan C. Org. Lett. 2008; 10: 3961
    • 6b Krasnokutskaya EA, Semenischeva NI, Filimonov VD, Knochel P. Synthesis 2007; 81
    • 6c Kutonova KV, Trusova ME, Postnikov PS, Filimonov VD, Parello J. Synthesis 2013; 45: 2706
  • 7 Butler RN. Chem. Rev. 1975; 75: 241
  • 8 Oger N, Le Grognec E, Felpin F.-X. J. Org. Chem. 2014; 79: 8255
  • 9 Koradin C, Dohle W, Rodriguez AL, Schmid B, Knochel P. Tetrahedron 2003; 59: 1571
  • 10 Boganyi B, Kaman J. Tetrahedron 2013; 69: 9512
  • 11 Ullmann F. Justus Liebigs Ann. Chem. 1904; 332: 38