Synthesis 2016; 48(15): 2303-2322
DOI: 10.1055/s-0035-1560450
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Transition-Metal-Catalyzed Synthesis of Coumarins

Priyanka,
Rajesh Kumar Sharma
Department of Chemistry, Mahila MahaVidyalaya, Banaras Hindu University, Varanasi-221005, India   Email: dikshakatiyar@gmail.com
,
Diksha Katiyar*
Department of Chemistry, Mahila MahaVidyalaya, Banaras Hindu University, Varanasi-221005, India   Email: dikshakatiyar@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 17 March 2016

Accepted after revision: 09 May 2016

Publication Date:
07 July 2016 (online)


Abstract

Coumarin is a privileged scaffold found in a large number of biologically active natural products, pharmaceuticals and agrochemicals, and functionalized coumarins are also widely employed as materials. For this reason, considerable interest has been focused on the development of new protocols to access this heterocyclic moiety in the past few decades. Among the numerous methods developed so far, transition-metal-catalyzed reactions are the most attractive methodologies for the synthesis of coumarins under rather mild reaction conditions. This review provides an overview of the recent developments in this field.

1 Introduction

2 Palladium Catalysis

3 Platinum Catalysis

4 Cobalt Catalysis

5 Copper Catalysis

6 Gold Catalysis

7 Iron Catalysis

8 Nickel Catalysis

9 Rhodium Catalysis

10 Ruthenium Catalysis

11 Zinc Catalysis

12 Conclusion

 
  • References

  • 1 Murray RD. H, Mendez J, Brown SA. The Natural Coumarins: Occurrence, Chemistry and Biochemistry . Wiley; New York: 1982
    • 2a Murray RD. H. Nat. Prod. Rep. 1989; 6: 591
    • 2b Egan D, O’Kennedy R, Moran E, Cox D, Prosser E, Thornes RD. Drug Metab. Rev. 1990; 22: 503
    • 2c Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN. Curr. Pharm. Des. 2004; 10: 3813
    • 2d Borges F, Roleira F, Milhazes N, Santana L, Uriarte E. Curr. Med. Chem. 2005; 12: 887
    • 2e Kontogiorgis C, Detsi A, Hadjipavlou-Litina D. Expert Opin. Ther. Pat. 2012; 22: 437
    • 2f Gomez-Outes A, Suarez-Gea ML, Calvo-Rojas G, Lecumberri R, Rocha E, Pozo-Hernandez C, Terleira-Fernandez AI, Vargas-Castrillon E. Curr. Drug Discovery Technol. 2012; 9: 83
    • 3a Koefod RS, Mann KR. Inorg. Chem. 1989; 28: 2285
    • 3b Trenor SR, Shultz AR, Love BJ, Long TE. Chem. Rev. 2004; 104: 3059
    • 3c Sheng R, Wang P, Gao Y, Wu Y, Liu W, Ma J, Li H, Wu S. Org. Lett. 2008; 10: 5015
    • 3d Gonçalves MS. Chem. Rev. 2009; 109: 190
    • 3e Xu X, Hu X, Wang J. Beilstein J. Org. Chem. 2013; 9: 254
    • 3f Zhou Y, Liu K, Li J.-Y, Fang Y, Zhao T.-C, Yao C. Org. Lett. 2011; 13: 1290
    • 3g Tasior M, Voloshchuk R, Poronik YM, Rowicki T, Gryko DT. J. Porphyrins Phthalocyanines 2011; 15: 1011
    • 4a Kennedy O, Zhorenes R. Coumarins: Biology, Applications and Mode of Action . John Wiley & Sons; Chichester: 1997
    • 4b Guan A.-Y, Liu C.-L, Li M, Zhang H, Li Z.-N, Li Z.-M. Pest Manag. Sci. 2011; 67: 647
    • 4c Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
  • 5 Hoult JR. S, Payá M. Gen. Pharmacol. 1996; 27: 713
    • 6a Potdar MK, Mohile SS, Salunkhe MM. Tetrahedron Lett.. 2001; 42: 9285
    • 6b Karimi B, Zareyee D. Org. Lett. 2008; 10: 3989
    • 7a Perkin WH. J. Chem. Soc. 1868; 21: 53
    • 7b Garazd MM, Garazd YL, Khilya VP. Chem. Nat. Compd. 2005; 41: 245
    • 8a Brufola G, Fringuelli F, Piermatti O, Pizzo F. Heterocycles 1996; 43: 1257
    • 8b Song A, Wang X, Lam KS. Tetrahedron Lett. 2003; 44: 1755
    • 9a Yavari I, Hekmat-Shoar R, Zonouzi A. Tetrahedron Lett. 1998; 39: 2391
    • 9b Audisio D, Messaoudi S, Brion J.-D, Alami M. Eur. J. Org. Chem. 2010; 1046

      For reviews on transition-metal catalysis, see:
    • 10a Hartwig JF. Nature 2008; 455: 314
    • 10b Ye L.-W, Shu C, Gagosz F. Org. Biomol. Chem. 2014; 12: 1833
    • 10c Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
    • 10d Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. 2009; 121: 5196 ; Angew. Chem. Int. Ed. 2009, 48, 5094
    • 10e Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 10f McGlacken GP, Bateman LM. Chem. Soc. Rev. 2009; 38: 2447
    • 10g Daugulis O, Do H.-Q, Shavashov D. Acc. Chem. Res. 2009; 42: 1074
    • 10h Ackermann L. Chem. Rev. 2011; 111: 1315
    • 10i Sun C.-L, Li B.-J, Shi Z.-J. Chem. Commun. 2010; 46: 677
    • 10j Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
    • 11a Sonogashira K In Metal-Catalyzed Cross-Coupling Reactions . Diederich F, Stang PJ. Wiley-VCH; Weinheim: 1998: 203
    • 11b Bates R. Organic Synthesis Using Transition Metals . 2nd ed. John Wiley & Sons; New York: 2012
  • 12 Yamamoto Y. Chem. Soc. Rev. 2014; 43: 1575
  • 13 Fedorov AY, Nyuchev AV, Beletskaya IP. Chem. Heterocycl. Compd. 2012; 48: 166
  • 14 Catellani M, Chiusoli GP, Fagnola MC, Solari G. Tetrahedron Lett. 1994; 35: 5919
  • 15 Catellani M, Chiusoli GP, Fagnola MC, Solari G. Tetrahedron Lett. 1994; 35: 5923
  • 16 Catellani M, Chiusoli GP, Marzolini G, Rossi E. J. Organomet. Chem. 1996; 525: 65
    • 17a Larock RC. J. Organomet. Chem. 1999; 576: 111
    • 17b Khumtaveeporn K, Alper H. Acc. Chem. Res. 1995; 28: 414
    • 17c Barnard CF. J. Organometallics 2008; 27: 5402
  • 18 An Z.-W, Catellani M, Chiusoli GP. J. Organomet. Chem. 1989; 371: C51
  • 19 Kadnikov DV, Larock RC. Org. Lett. 2000; 2: 3643
  • 20 Kadnikov DV, Larock RC. J. Org. Chem. 2003; 68: 9423
  • 21 Kadnikov DV, Larock RC. J. Organomet. Chem. 2003; 687: 425
  • 22 Dang H, Garcia-Garibay MA. J. Am. Chem. Soc. 2001; 123: 355
  • 23 Cao H, Xiao W.-J. Can. J. Chem. 2005; 83: 826
  • 24 Gabriele B, Mancuso R, Salerno G, Plastina P. J. Org. Chem. 2008; 73: 756
  • 25 Ferguson J, Zeng F, Alper H. Org. Lett. 2012; 14: 5602
  • 26 Sasano K, Takaya J, Iwasawa N. J. Am. Chem. Soc. 2013; 135: 10954
  • 27 Trost BM, Toste FD. J. Am. Chem. Soc. 1996; 118: 6305
  • 28 Trost BM, Toste FD, Greenman K. J. Am. Chem. Soc. 2003; 125: 4518
  • 29 Jia C, Lu W, Oyamada J, Kitamura T, Matsuda K, Irie M, Fujiwara Y. J. Am. Chem. Soc. 2000; 122: 7252
    • 30a Kitamura T, Yamamoto K, Kotani M, Oyamada J, Jia C, Fujiwara Y. Bull. Chem. Soc. Jpn. 2003; 76: 1889
    • 30b Kotani M, Yamamoto K, Oyamada J, Fujiwara Y, Kitamura T. Synthesis 2004; 1466
  • 31 Cacchi S, Fabrizi G, Moro L, Pace P. Synlett 1997; 1367
  • 32 Jia C, Piao D, Kitamura T, Fujiwara Y. J. Org. Chem. 2000; 65: 7516
  • 33 Li K, Zeng Y, Neuenswander B, Tunge JA. J. Org. Chem. 2005; 70: 6515
  • 34 Kitamura T, Otsubo K. J. Org. Chem. 2012; 77: 2978
  • 35 Battistuzzi G, Cacchi S, De Salve I, Fabrizi G, Parisi LM. Adv. Synth. Catal. 2005; 347: 308
  • 36 Ulgheri F, Marchetti M, Piccolo O. J. Org. Chem. 2007; 72: 6056
    • 37a Wefer J, Truss MC, Jonas U. World J. Urol. 2001; 19: 312
    • 37b Rovner ES, Wein AJ. Eur. Urol. 2002; 41: 6
  • 38 Fernandes TA, Carvalho RC. C, Gonçalves TM. D, da Silva AJ. M, Costa PR. R. Tetrahedron Lett. 2008; 49: 3322
  • 39 Fernandes TA, Vaz BG, Eberlin MN, da Silva AJ. M, Costa PR. R. J. Org. Chem. 2010; 75: 7085
  • 40 Giguère D, Patnam R, Juarez-Ruiz JM, Neault M, Roy R. Tetrahedron Lett. 2009; 50: 4254
  • 41 Barancelli DA, Salles AG. Jr, Taylor JG, Correia CR. D. Org. Lett. 2012; 14: 6036
  • 42 Yang Y, Han J, Wu X, Xu S, Wang L. Tetrahedron Lett. 2015; 56: 3809
  • 43 Aoki S, Oyamada J, Kitamura T. Bull. Chem. Soc. Jpn. 2005; 78: 468
  • 44 Sharma U, Naveen T, Maji A, Manna S, Maiti D. Angew. Chem. Int. Ed. 2013; 52: 12669
  • 45 Zhang X.-S, Li Z.-W, Shi Z.-J. Org. Chem. Front. 2014; 1: 44
  • 46 Kim D, Min M, Hong S. Chem. Commun. 2013; 49: 4021
  • 47 Queiroz M.-JR. P, Abreu AS, Calhelha RC, Carvalho MS. D, Ferreira PM. T. Tetrahedron 2008; 64: 5139
  • 48 Oyamada J, Kitamura T. Tetrahedron 2006; 62: 6918
  • 49 Vadola PA, Sames D. J. Org. Chem. 2012; 77: 7804
  • 50 Liu X.-G, Zhang S.-S, Jiang C.-Y, Wu J.-Q, Li Q, Wang H. Org. Lett. 2015; 17: 5404
  • 51 Yamamoto Y, Kirai N. Org. Lett. 2008; 10: 5513
  • 52 Reddy MS, Thirupathi N, Haribabu M. Beilstein J. Org. Chem. 2013; 9: 180
  • 53 Patil NT, Nijamudheen A, Datta A. J. Org. Chem. 2012; 77: 6179
  • 54 Shi Z, He C. J. Org. Chem. 2004; 69: 3669
  • 55 Menon RS, Findlay AD, Bissembe AC, Banwell MG. J. Org. Chem. 2009; 74: 8901
  • 56 Li R, Wang SR, Lu W. Org. Lett. 2007; 9: 2219
  • 57 Kutubi S, Hashimoto T, Kitamura T. Synthesis 2011; 1283
  • 58 Rayabarapu DK, Sambaiah T, Cheng C.-H. Angew. Chem. Int. Ed. 2001; 40: 1286
  • 59 Rayabarapu DK, Shukla P, Cheng C.-H. Org. Lett. 2003; 5: 4903
  • 60 Madan S, Cheng C.-H. J. Org. Chem. 2006; 71: 8312
    • 61a Ishii H, Ishikawa T, Murota M, Aoki Y, Harayama T. J. Chem. Soc., Perkin Trans. 1 1993; 1019
    • 61b Ishii H, Ishikawa T, Haginiwa J. Yakugaku Zasshi 1977; 97: 890
  • 62 Nakai K, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2011; 133: 11066
  • 63 Yoneda E, Sugioka T, Hirao K, Zhang S.-W, Takahashi S. J. Chem. Soc., Perkin Trans. 1 1998; 477
  • 64 Seoane A, Casanova N, Quiñones N, Mascareñas JL, Gulías M. J. Am. Chem. Soc. 2014; 136: 834
  • 65 Zhao Y, Han F, Yang L, Xia C. Org. Lett. 2015; 17: 1477
  • 66 Gadakh SK, Dey S, Sudalai A. J. Org. Chem. 2015; 80: 11544
  • 67 Chatterjee AK, Toste FD, Goldberg SD, Grubbs RH. Pure Appl. Chem. 2003; 75: 421
  • 68 Van TN, Debenedetti S, De Kimpe N. Tetrahedron Lett. 2003; 44: 4199
  • 69 Schmidt B, Krehl S. Chem. Commun. 2011; 47: 5879
  • 70 Leão RA. C, de Moraes PF, Pedro MC. B. C, Costa PR. R. Synthesis 2011; 3692