Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2015; 47(19): 2912-2923
DOI: 10.1055/s-0035-1560457
DOI: 10.1055/s-0035-1560457
feature
Palladium-Catalyzed Heck-Type Difluoroalkylation of Alkenes with Functionalized Difluoromethyl Bromides
Further Information
Publication History
Received: 02 July 2015
Accepted after revision: 27 July 2015
Publication Date:
17 August 2015 (online)
Abstract
An efficient method for the synthesis of difluoroalkylated alkenes through palladium-catalyzed Heck-type reaction with functionalized difluoromethyl bromides has been developed. The advantages of this protocol are its synthetic simplicity, excellent functional group compatibility, and efficient late-stage difluoroalkylation of biologically relevant molecules, thus paving a new way for application in drug discovery and development. Mechanistic studies revealed that the free difluoroalkyl radicals, initiated by a [Pd(0)Ln] via a single-electron-transfer (SET) pathway, were involved in the Heck-type catalytic cycle.
Key words
alkenes - difluoroalkylation - functionalized difluoromethyl bromides - Heck-type reaction - palladiumSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560457.
- Supporting Information
-
References
- 1a Modern Carbonyl Olefination . Takeda T. Wiley-VCH; Weinheim: 2004
- 1b Takahashi A, Kirio Y, Sodeoka M, Sasai H, Shibasaki M. J. Am. Chem. Soc. 1989; 111: 643
- 1c Wu X-F, Fang X, Wu L, Jackstell R, Neumann N, Beller M. Acc. Chem. Res. 2014; 47: 1041
- 2a Smart BE. J. Fluorine Chem. 2001; 109: 3
- 2b Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 2c O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 2d Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 3a Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
- 3b Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
- 3c Hollingworth C, Gouverneur V. Chem. Commun. 2012; 48: 2929
- 3d Besset T, Schneider C, Cahard D. Angew. Chem. Int. Ed. 2012; 51: 5048
- 3e Qing F.-L. Chin. J. Org. Chem. 2012; 32: 815
- 3f Ni C, Zhu L, Hu J. Acta Chim. Sinica 2015; 73: 90
- 3g Belhomme M.-C, Besset T, Poisson T, Pannecoucke X. Chem. Eur. J. 2015; 21 in press; DOI: 10.1002/chem.201501475
- 4 Besset T, Poisson T, Pannecoucke X. Chem. Eur. J. 2014; 20: 16830
- 5 Taguchi T, Kitagawa O, Morikawa T, Nishiwaki T, Uehara H, Endo H, Kobayashi Y. Tetrahedron Lett. 1986; 27: 6103
- 6 Yokomatsu T, Suemune K, Murano T, Shibuya S. J. Org. Chem. 1996; 61: 7207
- 7a Fier PS, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 5524
- 7b Prakash GK. S, Ganesh SK, Jones J.-P, Kulkarni A, Masood K, Swabeck JK, Olah GA. Angew. Chem. Int. Ed. 2012; 51: 12090
- 8 Schwaebe MK, McCarthy JR, Whitten JP. Tetrahedron Lett. 2000; 41: 791
- 9a Long Z.-Y, Chen Q.-Y. J. Org. Chem. 1999; 64: 4775
- 9b Murakami S, Ishii H, Fuchigami T. J. Fluorine Chem. 2004; 125: 609
- 9c Ghattas W, Hess CR, Iacazio G, Hardre R, Klinman JP, Reglier M. J. Org. Chem. 2006; 71: 8618
- 9d Yu C, Iqbal N, Park S, Cho EJ. Chem. Commun. 2014; 50: 12884
- 10a Affo W, Ohmiya H, Fujoka T, Ikeda Y, Nakamura T, Yorimitsu H, Oshima K, Imamura Y, Mizuta T, Miyoshi K. J. Am. Chem. Soc. 2006; 128: 8068
- 10b Firmansjah L, Fu GC. J. Am. Chem. Soc. 2007; 129: 11340
- 10c Standley EA, Jamison TF. J. Am. Chem. Soc. 2013; 135: 1585
- 10d Matsubara R, Gutierrez AC, Jamison TF. J. Am. Chem. Soc. 2011; 133: 19020
- 10e Bloome KS, McMahen RL, Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 20146
- 10f Zhou Y, Zhou JS. Chem. Commun. 2014; 50: 3725
- 11 Surapanich N, Kuhakarn C, Pohmakotr M, Reutrakul V. Eur. J. Org. Chem. 2012; 5943
- 12 Feng Z, Min Q.-Q, Zhao H.-Y, Gu J.-W, Zhang X. Angew. Chem. Int. Ed. 2015; 54: 1270
- 13a Belhomme M.-C, Poisson T, Pannecoucke X. Org. Lett. 2013; 15: 3428
- 13b Caillot G, Dufour J, Belhomme M.-C, Poisson T, Grimaud L, Pannecoucke X, Gillaizeau I. Chem. Commun. 2014; 50: 5887
- 14a Feng Z, Chen F, Zhang X. Org. Lett. 2012; 14: 1938
- 14b Feng Z, Min Q.-Q, Xiao Y.-L, Zhang B, Zhang X. Angew. Chem. Int. Ed. 2014; 53: 1669
- 14c Min Q.-Q, Yin Z, Guo W.-H, Zhang X. J. Am. Chem. Soc. 2014; 136: 1230
- 14d Xiao Y.-L, Guo W.-H, He G.-Z, Pan Q, Zhang X. Angew. Chem. Int. Ed. 2014; 53: 9909
- 14e Yu Y.-B, He G.-Z, Zhang X. Angew. Chem. Int. Ed. 2014; 53: 10457
- 14f Xiao Y.-L, Zhang B, Feng Z, Zhang X. Org. Lett. 2014; 16: 4822
- 14g Feng Z, Xiao Y.-L, Zhang X. Org. Chem. Front. 2014; 1: 113
- 14h Gu J.-W, Guo W.-H, Zhang X. Org. Chem. Front. 2015; 2: 38
- 15a Grushin VV, Marshall WJ. J. Am. Chem. Soc. 2006; 128: 12644
- 15b Bakhmutov VI, Bozoglian F, Gómez K, González G, Grushin VV, Macgregor SA, Martin E, Miloserdov FM, Novikov MA, Panetier JA, Romasho LV. Organometallics 2012; 31: 1315
- 16a Patil PO, Bari SB, Firke SD, Deshmukh PK, Donda ST. Bioorg. Med. Chem. 2013; 21: 2434
- 16b Poulie CB. M, Bunch L. ChemMedChem 2013; 8: 205
- 16c Dickinson JM. Nat. Prod. Rep. 1993; 10: 71
- 17a Wegert A, Miethchen R, Hein M, Reinke H. Synthesis 2005; 1850
- 17b Leclerc E, Pannecoucke X, Etheve-Quelquejeu M, Sollogoub M. Chem. Soc. Rev. 2013; 42: 4270
- 18a Smits R, Koksch B. Curr. Top. Med. Chem. 2006; 6: 1483
- 18b Fustero S, Sanz-Cervera JF, Acena JL, Sanchez-Rosello M. Synlett 2009; 525
- 19 Huang X.-T, Chen Q.-Y. J. Org. Chem. 2001; 66: 4651
- 20a Baldwin JE. Chem. Rev. 2003; 103: 1197
- 20b Shirakawa E, Zhang X, Hayashi T. Angew. Chem. Int. Ed. 2011; 50: 4671
- 20c Liwosz TW, Chemler SR. Org. Lett. 2013; 15: 3034
For selected reviews, see:
For selected examples, see:
A copper-catalyzed difluoroacetylation of dihydropyrans and enamides has also been reported recently. However, the styrene derivatives were not suitable substrates, see:
For our contribution in transition-metal-catalyzed difluoroalkylation reactions, see:
For a study on the reductive elimination from [ArPd(Xantphos)CF3] complex, see:
For radical clock experiments using α-cyclopropylstyrene, see: