Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(20): 2817-2820
DOI: 10.1055/s-0035-1560538
DOI: 10.1055/s-0035-1560538
cluster
Nickel-Catalyzed Enantioselective Friedel–Crafts Alkylation of Indoles with β,β-Disubstituted Nitroalkenes
Further Information
Publication History
Received: 27 July 2015
Accepted after revision: 30 October 2015
Publication Date:
23 November 2015 (online)
Abstract
An enantioselective Friedel–Crafts alkylation of indoles with β,β-disubstituted nitroalkenes was developed by using a nickel(II) perchlorate–bisoxazoline complex as a catalyst. A range of nitroalkenes and indoles participated in this reaction, affording chiral indole compounds bearing all-carbon quaternary stereocenters in excellent yields and with moderate to good enantioselectivities (up to 80% ee).
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560538.
- Supporting Information
-
References and Notes
- 1a Corey EJ, Guzman-Perez A. Angew. Chem. Int. Ed. 1998; 37: 388
- 1b Christoffers J, Mann A. Angew. Chem. Int. Ed. 2001; 40: 4591
- 1c Douglas CJ, Overman LE. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 5363
- 1d Trost BM, Jiang C. Synthesis 2006; 369
- 1e Marek I, Sklute G. Chem. Commun. 2007; 1683
- 1f Bella M, Gasperi T. Synthesis 2009; 1583
- 1g Hawner C, Alexakis A. Chem. Commun. 2010; 46: 7295
- 1h Hong AY, Stoltz BM. Eur. J. Org. Chem. 2013; 2745
- 2a Catalytic Asymmetric Friedel–Crafts Alkylations . Bandini M, Umani-Ronchi A. Wiley-VCH; Weinheim: 2009
- 2b Poulsen TB, Jørgensen KA. Chem. Rev. 2008; 108: 2903
- 2c You S.-L, Cai Q, Zeng M. Chem. Soc. Rev. 2009; 38: 2190
- 2d Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
- 2e Terrasson V, de Figueiredo RM, Campagne JM. Eur. J. Org. Chem. 2010; 2635
- 3a Banwell MG, Beck DA. S, Willis AC. ARKIVOC 2006; (iii): 163
- 3b Łyżwa D, Dudziński K, Kwiatkowski P. Org. Lett. 2012; 14: 1540
- 3c Liu R, Zhang J. Org. Lett. 2013; 15: 2266
- 4a Herrera RP, Sgarrzani V, Bernardi L, Ricci A. Angew. Chem. Int. Ed. 2005; 44: 6576
- 4b Jia Y.-X, Zhu S.-F, Yang Y, Wang L.-X, Zhou Q.-L. J. Org. Chem. 2006; 71: 75
- 4c Lu S.-F, Du D.-M, Xu J. Org. Lett. 2006; 8: 2115
- 4d Trost BM, Müller C. J. Am. Chem. Soc. 2008; 130: 2438
- 4e Ganesh M, Seidel D. J. Am. Chem. Soc. 2008; 130: 16464
- 4f Itoh J, Fuchibe K, Akiyama T. Angew. Chem. Int. Ed. 2008; 47: 4016
- 4g Yokoyama N, Arai T. Chem. Commun. 2009; 3285
- 4h Sheng Y.-F, Gu Q, Zhang A.-J, You S.-L. J. Org. Chem. 2009; 74: 6899
- 4i Liu H, Du D.-M. Adv. Synth. Catal. 2010; 352: 1113
- 4j Wu J, Li X, Wu F, Wan B. Org. Lett. 2011; 13: 4834
- 4k Zhang G. Org. Biomol. Chem. 2012; 10: 2534
- 5a Gao J.-R, Wu H, Xiang B, Yu W.-B, Han L, Jia Y.-X. J. Am. Chem. Soc. 2013; 135: 2983
- 5b Wu H, Liu R.-R, Jia Y.-X. Synlett 2014; 457
- 5c Wu H, Liu R.-R, Shen C, Zhang M.-D, Gao J, Jia Y.-X. Org. Chem. Front. 2015; 2: 124
- 6 Arai T, Yamamoto Y, Awata A, Kamiya K, Ishibashi M, Arai A. Angew. Chem. Int. Ed. 2013; 52: 2486
- 7a Weng J.-Q, Deng Q.-M, Wu L, Xu K, Wu H, Liu R.-R, Gao J.-R, Jia Y.-X. Org. Lett. 2014; 16: 776
- 7b Chen L.-A, Tang X, Xi J, Xu W, Gong L, Meggers E. Angew. Chem. Int. Ed. 2013; 52: 14021
- 7c Mori K, Wakazawa M, Akiyama T. Chem. Sci. 2014; 5: 1799
- 8 Wu J, Mampreian DM, Hoveyda AH. J. Am. Chem. Soc. 2005; 127: 4584
- 9 Lu H.-H, Zhang F.-G, Meng X.-G, Duan S.-W, Xiao W.-J. Org. Lett. 2009; 11: 3946
- 10 Zhang F.-G, Yang Q.-Q, Xuan J, Lu H.-H, Duan S.-W, Chen J.-R, Xiao W.-J. Org. Lett. 2010; 12: 5636
- 11a Czekelius C, Carreira EM. Angew. Chem. Int. Ed. 2003; 42: 4793
- 11b Martin NJ. A, Ozores L, List B. J. Am. Chem. Soc. 2007; 129: 8976
- 11c Li S, Huang K, Cao B, Zhang J, Wu W, Zhang X. Angew. Chem. Int. Ed. 2012; 51: 8573
- 11d Cai X.-F, Chen M.-W, Ye Z.-S, Guo R.-N, Shi L, Li Y.-Q, Zhou Y.-G. Chem. Asian J. 2013; 8: 1381
- 11e Li S, Huang K, Zhang J, Wu W, Zhang X. Chem. Eur. J. 2013; 19: 10840
- 11f Chen L.-A, Xu W, Huang B, Ma J, Wang L, Xi J, Harms K, Gong L, Meggers E. J. Am. Chem. Soc. 2013; 135: 10598
- 12 Indoles 3; General Procedure A dried Schlenk tube was charged with Ni(ClO4)2·6H2O (7.3 mg, 0.02 mmol) and ligand L5 (11.7 mg, 0.024 mmol) under N2. Toluene (2.0 mL) was then added from a syringe and the mixture was stirred at 50 °C for 1 h. The appropriate nitroalkene 2 (0.2 mmol) and indole 1 (0.3 mmol) were added, and the mixture was stirred at 50 °C until the reaction was complete (TLC). The solvent was removed under vacuum, and the residue was purified by chromatography [silica gel, EtOAc–PE (1:4)].
- 13 3-[(1S)-1-Methyl-2-nitro-1-phenylethyl]-1H-indole (3aa) White solid; 90% yield, 77% ee; mp 145–146 °C; [α]D 20 +47.6 (c 0.5, CH2Cl2). 1H NMR (500 MHz, CDCl3): δ = 2.03 (s, 3 H), 5.16 (d, J = 10.5 Hz, 1 H), 5.26 (d, J = 10.5 Hz, 1 H), 6.62–6.97 (m, 2 H), 7.15–7.18 (m, 2 H), 7.26–7.34 (m, 5 H), 7.38 (d, J = 8.0 Hz, 1 H), 8.11 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 26.8, 43.8, 84.6, 111.5, 119.2, 119.5, 120.5, 122.2, 125.2, 126.5, 127.0, 128.5, 136.9, 143.9. HRMS (ESI+): m/z [M + Na]+ calcd for C18H15F3N2NaO2: 371.0983; found: 371.099. HPLC [Daicel Chiralpak AD-H column (25 × 0.46 cm), hexane–i-PrOH (90:10), 1.0 mL/min, λ = 254 nm]: tminor = 18.5 min, tmajor = 17.1 min.
- 14 The absolute configuration of product 3aa was assigned as S; for details see the Supporting Information.
For selected reviews on the enantioselective construction of quaternary stereocenters, see:
For a book on the asymmetric Friedel–Crafts reaction, see:
For selected reviews, see:
For selected examples of the asymmetric Friedel–Crafts reaction of β-monosubstituted nitroalkenes with indoles and pyrroles, see: