Subscribe to RSS
DOI: 10.1055/s-0035-1560906
Regiochemical and Stereochemical Studies of the Intramolecular Dipolar Cycloaddition of Nitrones Derived from Quaternary Aldehydes
Publication History
Received: 15 September 2015
Accepted after revision: 07 October 2015
Publication Date:
06 November 2015 (online)
Abstract
Three aldehydes each with a quaternary α-carbon stereocentre bearing an alkenyl, a phenyl, and a methyl ester group were treated with N-methylhydroxylamine. In each case bicyclic isoxazolidine products were formed by condensation to give intermediate nitrones that undergo intramolecular dipolar cycloaddition. The stereoselectivity was influenced by the α-carbonyl substituent, possibly by a hydrogen bond between CO and a nearby CH of the nitrone in the transition state (supported by DFT and X-ray studies), and the regioselectivity was affected by the length of the tether and by the presence of an ester on the alkene dipolarophile.
Key words
cycloaddition - diastereoselectivity - domino reaction - fused-ring systems - heterocyclesSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560906. Experimental details and spectroscopic data, including NMR spectra and X-ray crystal structures are provided .
- Supporting Information
-
References and Notes
- 1 LeBel NA, Post ME, Whang JJ. J. Am. Chem. Soc. 1964; 86: 3759
- 2a Jones RC. F, Martin JN In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. Padwa A, Pearson WH. Wiley; New York: 2002. Chap. 1
- 2b Revuelta J, Cicchi S, Goti A, Brandi A. Synthesis 2007; 485
- 2c Burrell AJ. M, Coldham I. Curr. Org. Synth. 2010; 7: 312
- 3a Burrell AJ. M, Coldham I, Watson L, Oram N, Pilgram CD, Martin NG. J. Org. Chem. 2009; 74: 2290
- 3b Burrell AJ. M, Coldham I, Oram N. Org. Lett. 2009; 11: 1515
- 3c Burrell AJ. M, Watson L, Martin NG, Oram N, Coldham I. Org. Biomol. Chem. 2010; 8: 4530
- 3d Franklin AI, Bensa D, Adams H, Coldham I. Org. Biomol. Chem. 2011; 9: 1901
- 3e Coldham I, Burrell AJ. M, Guerrand HD. S, Oram N. Org. Lett. 2011; 13: 1267
- 3f Coldham I, Watson L, Adams H, Martin NG. J. Org. Chem. 2011; 76: 2360
- 3g Coldham I, Burrell AJ. M, Watson L, Oram N, Martin NG. Heterocycles 2012; 84: 597
- 4a Vinick FJ, Fengler IE, Gschwend HW. J. Org. Chem. 1977; 42: 2936
- 4b Black DS. C, Crozier RF, Rae ID. Aust. J. Chem. 1978; 31: 2013
- 4c Moskal J, Milart P. Chem. Ber. 1985; 118: 4014
- 4d Annunziata R, Cinquini M, Cozzi F, Raimondi L. Tetrahedron Lett. 1988; 29: 2881
- 4e Aurich HG, Biesemeier F, Boutahar M. Chem. Ber. 1991; 124: 2329
- 4f Aurich HG, Biesemeier F. Synthesis 1995; 1171
- 4g Frederickson M, Grigg R, Rankovic Z, Thornton-Pett M, Redpath J, Crossley R. Tetrahedron 1995; 51: 6835
- 4h Jung ME, Vu BT. J. Org. Chem. 1996; 61: 4427
- 4i Ferrara M, Cordero FM, Goti A, Brandi A, Estieu K, Paugam R, Ollivier J, Salaün J. Eur. J. Org. Chem. 1999; 2725
- 4j Ishikawa T, Kudo T, Shigemori K, Saito S. J. Am. Chem. Soc. 2000; 122: 7633
- 4k Huang KS.-L, Lee EH, Olmstead MM, Kurth MJ. J. Org. Chem. 2000; 65: 499
- 4l Blackwell M, Dunn PJ, Graham AB, Grigg R, Higginson P, Saba IS, Thornton-Pett M. Tetrahedron 2002; 58: 7715
- 4m Dunn PJ, Graham AB, Grigg R, Higginson P, Thornton-Pett M. Tetrahedron 2002; 58: 7727
- 4n Borsini E, Broggini G, Contini A, Zecchi G. Eur. J. Org. Chem. 2008; 2808
- 5a Chandler M, Parsons PJ. J. Chem. Soc., Chem. Commun. 1984; 322
- 5b Jeong JH, Weinreb SM. Org. Lett. 2006; 8: 2309
- 5c Chua PJ, Tan B, Yang L, Zeng X, Zhu D, Zhong G. Chem. Commun. 2010; 46: 7611
- 5d Xie J, Xue Q, Jin H, Li H, Cheng Y, Zhu C. Chem. Sci. 2013; 4: 1281
- 5e Endoma-Arias MA. A, Hudlicky JR, Simionescu R, Hudlicky T. Adv. Synth. Catal. 2014; 356: 333
- 6 Mancuso AJ, Swern D. Synthesis 1981; 165
- 7a Sandoval-Lira J, Fuentes L, Quintero L, Höpfl H, Hernández-Pérez JM, Terán JL, Sartillo-Piscil F. J. Org. Chem. 2015; 80: 4481
- 7b Sheikh NS, Leonori D, Barker G, Firth JD, Campos KR, Meijer AJ. H. M, O’Brien P, Coldham I. J. Am. Chem. Soc. 2012; 134: 5300
- 8 Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett. 1999; 1: 953
- 9 Dimethyl 1-Methyl-7-phenyloctahydrobenzo[c]isoxazole-3,7-dicarboxylate (14a) The aldehyde 13 (100 mg, 0.33 mmol), N-methylhydroxylamine hydrochloride (30 mg, 0.36 mmol), and DIPEA (0.12 mL, 0.66 mmol) in toluene (4 mL) was heated at 110 °C. After 2 h, the solvent was evaporated. Purification by column chromatography, eluting with PE–EtOAc (7:2), gave the cycloadducts 14a and 14b (67 mg, 61%) as a mixture (ratio 5:1 by 1H NMR spectroscopy) from which isomer 14a was isolated by crystallization from CH2Cl2–hexane (1:1) as amorphous solid; mp 98–100 °C; Rf = 0.28 [PE–EtOAc (7:2)]. IR (film): νmax = 2950, 1750, 1725, 1435 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.38–7.34 (2 H, m), 7.31–7.26 (3 H, m), 4.13 (1 H, s), 3.79 (3 H, s), 3.67 (3 H, s), 3.57 (1 H, d, J = 4 Hz), 3.23–3.19 (1 H, m), 2.46–2.38 (1 H, m), 2.35–2.26 (1 H, m), 1.97–1.87 (5 H, m), 1.74–1.59 (1 H, m), 1.37–1.26 (1 H, m). 13C NMR (400MHz, CDCl3): δ = 175.1, 172.9, 140.7, 128.8, 127.7, 126.3, 80.4, 70.5, 53.2, 52.4, 52.2, 48.1, 47.8, 26.9, 26.5, 22.2. HRMS (ES): m/z calcd for C18H23NO5 [MH+]: 334.1649; found [MH+]: 334.1646. LRMS (ES): m/z (%) = 334 (100) [MH+]. X-ray crystal structure analysis (see Supporting Information): CCDC 1422381.
For reviews, see:
For intramolecular nitrone cycloadditions that give products with an external aromatic substituent β to nitrogen, see for example:
For intramolecular nitrone cycloadditions that give products with a fused aromatic ring β to nitrogen, see for example
Electrostatic interaction of a carbonyl oxygen atom with a proton α to a nitrogen atom has been suggested to explain conformational preferences, see for example