Synthesis 2016; 48(04): 547-556
DOI: 10.1055/s-0035-1561296
paper
© Georg Thieme Verlag Stuttgart · New York

‘On-Water’ Multicomponent Reaction for the Diastereoselective Synthesis of Functionalized Tetrahydropyridines and Mechanistic Insight

Naisargee Parikh
Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160 062, Punjab, India   Email: akchakraborti@niper.ac.in   Email: akchakraborti@rediffmail.com
,
Sudipta Raha Roy
Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160 062, Punjab, India   Email: akchakraborti@niper.ac.in   Email: akchakraborti@rediffmail.com
,
Kapileswar Seth
Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160 062, Punjab, India   Email: akchakraborti@niper.ac.in   Email: akchakraborti@rediffmail.com
,
Asim Kumar
Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160 062, Punjab, India   Email: akchakraborti@niper.ac.in   Email: akchakraborti@rediffmail.com
,
Asit K. Chakraborti*
Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160 062, Punjab, India   Email: akchakraborti@niper.ac.in   Email: akchakraborti@rediffmail.com
› Author Affiliations
Further Information

Publication History

Received: 30 July 2015

Accepted after revision: 23 November 2015

Publication Date:
29 December 2015 (online)


Abstract

An ecofriendly approach for the synthesis of highly substituted tetrahydropyridines by an ‘on-water’ multicomponent reaction has been demonstrated. The use of water as the reaction medium is essential under the catalytic influence of a surfactant. The use of a variety of anionic, cationic, and non-ionic surfactants in water was examined and the reaction was successfully catalyzed by anionic surfactants sodium dioctyl sulfosuccinate (SDOSS) and sodium dodecyl sulfate (SDS), with the former being superior. The use of an organic solvent together with a catalytic amount of sodium dioctyl sulfosuccinate to form homogeneous conditions afforded inferior yields and highlighted the specific role of water through the creation of microreactors at the water surfactant interface. A mechanistic insight for the five-component reaction leading to the formation of tetrahydropyridines is provided invoking a tandem inter- and intramolecular Mannich reaction pathway.

Supporting Information

 
  • References

    • 1a Antimicrobial: Yankin AN, Nosova NV, Gein VL, Tomilov MV. Russ. J. Gen. Chem. 2015; 85: 844
    • 1b Antimalarial: Misra M, Pandey SK, Pandey VP, Pandey J, Tripathi R, Tripathi RP. Bioorg. Med. Chem. 2009; 17: 625
    • 1c Antiviral: Grishina GV, Borisenko AA, Veselov IS, Petrenko AM. Russ. J. Org. Chem. 2005; 41: 272
    • 1d Anticancer: Georges G, Grossman A, Mundigl O, Von Der Saal W, Sattelkau T. US 6800638, 2004
    • 1e Farnesyltransferase inhibitor: Gwaltney SL, O’Connor SJ, Nelson LT. J, Sullivan GM, Imade H, Wang W, Hasvold L, Li Q, Cohen J, Gu WZ, Tahir SK, Bauch J, Marsh K, Ng SC, Frost DJ, Zhang H, Muchmore S, Jakob CG, Stoll V, Hutchins C, Rosenberg SH, Sham HL. Bioorg. Med. Chem. Lett. 2003; 13: 1359
    • 1f m1 Agonist: Messer WS. Jr, Abuh YF, Liu Y, Periyasamy S, Ngur DO, Edgar MA. N, El-Assadi AA, Sbeih S, Dunbar PG, Oknich S, Rho T, Fang Z, Ojo B, Zhang H, Huzl JJ, Nagy PI. J. Med. Chem. 1997; 40: 1230
    • 1g MAO-B Agonist: Zhao Z, Dalvie D, Naiman N, Castagnoli K, Castagnoli NJr. J. Med. Chem. 1992; 35: 4473
    • 2a Nanomagnetic Fe@Si-Gu-Prs (0.025 g/2 mmol, neat, r.t., 15–45 min): Eshghi H, Khojastehnezhad A, Moeinpour F, Rezaeian S, Bakavoli M, Teymouri M, Rostami A, Haghbeen K. Tetrahedron 2015; 71: 436
    • 2b l-Proline nitrate (10 mol%, MeOH, r.t., 8–4 h): Agrawal NR, Bahekar SP, Sarode PB, Zade SS, Chandak HS. RSC Adv. 2015; 5: 47053
    • 2c Sulfamic acid (20 mol%, EtOH, r.t., 8–12 h): Sarkate AP, Sangshetti JN, Dharbale NB, Sarkate AP, Shinde DB. J. Chil. Chem. Soc. 2015; 59: 2248
    • 2d (±) CSA (10 mol%, neat, r.t., 4 h): Bharti R, Parvin T. J. Heterocycl. Chem. 2014; 51: 1806
    • 2e Silica H2SO4 (0.1 g/2 mmol, EtOH, 60 °C, 7–14 h): Zhang X, Wan Y, Pang L, Wang H, Zhao L, Wang C, Hang SY, Liu GX, Chen LF, Wu H. J. Heterocycl. Chem. 2014; 51: 442
    • 2f Nanocat Fe-Ce (100 mg/5.22 mol% Ce, EtOH, r.t., 18 h): Gawande MB, Bonifácio VD. B, Varma RS, Nogueira ID, Bundaleski N, Ghumman CA. A, Teodorod OM. N. D, Branco PS. Green Chem. 2013; 15: 1226
    • 2g AcOH (as solvent, r.t., 1–10 h): Lashkari M, Maghsoodlou MT, Hazeri N, Habibi-Khorassani SM, Sajadikhah SS, Doostmohamadi R. Synth. Commun. 2013; 43: 635
    • 2h Mixed Acidic Ionic Liquids (10–20 mol%, neat, 100 °C, ~1 h): Shaterian HR, Azizi K. J. Mol. Liq. 2013; 180: 187
    • 2i Fe(NO3)3·9H2O (20 mol%, EtOH, r.t., 5–12 h): Hazeri N, Maghsoodlou MT, Habibi-Khorassani SM, Aboonajimi J, Sajadikhah SS. J. Chin. Chem. Soc. 2013; 60: 355
    • 2j Chiral phosphoric acid (10 mol%, toluene, 35 °C, 3-Å molecular sieves, 48 h): Shi F, Tan W, Zhu R.-Y, Xing G.-J, Tu S.-J. Adv. Synth. Catal. 2013; 355: 1605
    • 2k Chiral phosphoric acid (10 mol%, toluene, –30 °C, 4-Å molecular sieves, 72 h): Li X, Zhao Y, Qu H, Mao Z, Lin X. Chem. Commun. 2013; 49: 1401
    • 2l LaCl3·7H2O (10 mol%, MeOH, r.t., 3–9 h): Umamahesh B, Sathesh V, Ramachandran G, Sathishkumar M, Sathiyanarayanam K. Catal. Lett. 2012; 142: 895
    • 2m Bi(NO3)3·5H2O (10 mol%, EtOH, r.t., 12–55 h): Brahmachari G, Das S. Tetrahedron Lett. 2012; 53: 1479
    • 2n BF3·SiO2 (15 mol%, MeOH, 65 °C, 7–9 h): Ramachandran R, Jayanthi S, Jeong YT. Tetrahedron 2012; 68: 363
    • 2o VCl3 (10 mol%, EtOH, r.t., 5–12 h): Pal S, Choudhury LH, Parvin T. Mol. Diversity 2012; 16: 129
    • 2p TsOH·H2O (0.11 g/2 mmol, EtOH, 7–16 h): Sajadikhah SS, Maghsoodlou MT, Hazeri N, Habibi-Khorassani SM, Shams-Najafi SJ. Monatsh. Chem. 2012; 143: 939
    • 2q ZrOCl2·8H2O (20 mol%, EtOH, reflux, 3–7 h): Mishra S, Ghosh R. Tetrahedron Lett. 2011; 52: 2857
    • 2r Ceric ammonium nitrate (15 mol%, MeCN, r.t., 16–45 h): Wang HJ, Mo LP, Zhang ZH. ACS Comb. Sci. 2011; 13: 181
    • 2s Thiourea dioxide (5 mol%, neat, r.t., 4–12 h): Verma S, Kumar S, Jain SL, Sain B. Org. Biomol. Chem. 2011; 9: 6943
    • 2t TBATB (10 mol%, EtOH, r,t,, 8–63 h): Khan AT, Lal M, Khan MdM. Tetrahedron Lett. 2010; 51: 4419
    • 2u I2 (10 mol%, MeOH, 8–48 h): Khan AT, Khan M, Bannuru KK. R. Tetrahedron 2010; 66: 7762
    • 2v BDMS (10 mol%, MeCN, r.t., 6–12 h): Khan AT, Parvin T, Choudhury LH. J. Org. Chem. 2008; 73: 8398
    • 2w InCl3 (33 mol%, MeCN, r.t., 24–48 h): Clarke PA, Zaytzev AV, Whitwood AC. Tetrahedron Lett. 2007; 48: 5209
  • 3 Tundo P, Anastas P, Black DS, Breen J, Collins T, Memoli S, Miyamoto J, Polyakoff M, Tumas W. Pure Appl. Chem. 2000; 72: 1207
    • 4a Poliakoff M, Licence P. Nature (London) 2007; 450: 810
    • 4b Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, Kleine HP, Knight C, Nagy MA, Perry DA, Stefaniak M. Green Chem. 2008; 10: 31
    • 4c Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 5a Constable DJ. C, Jimenez-Gonzalez C, Henderson RK. Org. Process Res. Dev. 2007; 11: 133
    • 5b Capello C, Fischer U, Hungerbühler K. Green Chem. 2007; 9: 927
  • 6 Hailes HC. Org. Process Res. Dev. 2007; 11: 114

    • For reviews:
    • 8a Dömling A. Chem. Rev. 2006; 106: 17
    • 8b Zhu J, Bienaymé H. Multicomponent Reactions . Wiley-VCH; Weinheim: 2005
    • 8c Potosky J. Drug Discovery Today 2005; 10: 115
    • 8d Wipf P, Stephenson CR. J, Okumura K. J. Am. Chem. Soc. 2003; 125: 14694
    • 8e Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 9a Tanwar B, Purohit P, Raju BN, Kumar D, Kommi DN, Chakraborti AK. RSC Adv. 2015; 5: 11873
    • 9b Seth K, Raha Roy S, Pipaliya BV, Chakraborti AK. Chem. Commun. 2013; 49: 5886
    • 9c Kommi DN, Kumar D, Seth K, Chakraborti AK. Org. Lett. 2013; 15: 1158
    • 9d Kommi DN, Kumar D, Chakraborti AK. Green Chem. 2013; 15: 756
    • 9e Kommi DN, Jadhavar PS, Kumar D, Chakraborti AK. Green Chem. 2013; 15: 798
    • 9f Kommi DN, Kumar D, Bansal R, Chebolu R, Chakraborti AK. Green Chem. 2012; 14: 3329
    • 9g Chankeshwara SV, Chakraborti AK. Org. Lett. 2006; 8: 3259
    • 9h Khatik GL, Kumar R, Chakraborti AK. Org. Lett. 2006; 8: 2433
    • 9i Chakraborti AK, Rudrawar S, Jadhav KB, Kaur G, Chankeshwara SV. Green Chem. 2007; 9: 1335
  • 10 Raha Roy S, Jadhavar PS, Seth K, Sharma KK, Chakraborti AK. Synthesis 2011; 2261
    • 11a Parikh N, Kumar D, Raha Roy S, Chakraborti AK. Chem. Commun. 2011; 47: 1797
    • 11b Sharma G, Kumar R, Chakraborti AK. Tetrahedron Lett. 2008; 49: 4269
    • 11c Shiri M, Zolfigol MA. Tetrahedron 2009; 65: 587
    • 11d Holmberg K. Eur. J. Org. Chem. 2007; 731
    • 11e Breslow R. Acc. Chem. Res. 1991; 24: 159
  • 12 Kumar D, Seth K, Kommi DN, Bhagat S, Chakraborti AK. RSC Adv. 2013; 3: 15157
  • 13 Mukhopadhyay C, Rana S, Butcher RJ, Schmiedekamp AM. Tetrahedron Lett. 2011; 52: 5835
  • 14 Chakraborti AK, Bhagat S, Rudrawar S. Tetrahedron Lett. 2004; 45: 7641
  • 15 Yadav JS, Kumar VN, Rao RS, Priyadarshini AD, Rao PP, Reddy BV. S, Nagaiah K. J. Mol. Catal. A: Chem. 2006; 256: 234