Subscribe to RSS
DOI: 10.1055/s-0035-1561336
Zwitterionic Imidazolium Salt: Recent Advances in Organocatalysis
Publication History
Received: 21 September 2015
Accepted after revision: 23 December 2015
Publication Date:
20 January 2016 (online)
Abstract
Imidazole-based zwitterionic-type molten salts have been explored as a new class of organocatalyst in various chemical transformations. It is known that imidazolium motifs provide an unconventional C–H bond for bonding. It is experimentally proven that C2–H of the imidazole moiety plays a crucial role in catalyzing the reaction via electrophilic activation. This review is based on the role of imidazole-based zwitterionic-type molten salts as an organocatalyst for some useful chemical transformations in organic synthesis. One of the most important features of this catalyst is that it can easily be recovered from the reaction media. The recovered catalyst can be reused for subsequent reactions without losing its catalytic activity significantly.
1 Introduction
2 Zwitterionic-type Molten Salt Catalyzed syn-Selective Aza-Henry Reaction
3 Synthesis of 1-(Amidoalkyl)- and 1-(Carbamatoalkyl)-2-naphthols
4 Synthesis of 3-Aminoalkylated Indoles
5 Synthesis of Highly Substituted Imidazoles
6 Synthesis of 5-Substituted 1H-Tetrazoles by the Cycloaddition of Arenecarbonitriles with Sodium Azide
7 Synthesis of 4-Arylidene-2-phenyloxazol-5(4H)-ones
8 Zwitterion-Promoted Ethylene Methoxycarbonylation
9 Synthesis of 5,6-Unsubstituted 1,4-Dihydropyridines
10 Regioselective Ring Opening of Aziridines
11 Conclusions
-
References
- 1 Anastas PT, Warner JC. Green Chemistry Theory and Practice . Oxford University Press; New York: 1998
- 2a Special issue: Organic Catalysis 2004; 346: 1007
- 2b Special issue: Organocatalysis, Chem. Rev. 2007; 107: 5413
- 3a Ionic Liquids in Synthesis . 2nd ed.; Wasserscheid P, Welton T. Wiley-VCH; Weinheim: 2008
- 3b Ranke J, Stolte S, Stormann R, Arning J, Jastorff B. Chem. Rev. 2007; 107: 2183
- 3c Greaves TL, Drummond CJ. Chem. Rev. 2008; 108: 206
- 3d Plechkova NV, Seddon KR. Chem. Soc. Rev. 2008; 37: 123
- 3e Hallett JP, Welton T. Chem. Rev. 2011; 111: 3508
- 3f Myles L, Gore RG, Gathergood N, Connon SJ. Green Chem. 2013; 15: 2740
- 4 Coleman D, Gathergood N. Chem. Soc. Rev. 2010; 39: 600
- 5a Xing H, Wang T, Zhou Z, Dai Y. Ind. Eng. Chem. Res. 2005; 44: 4147
- 5b Leng Y, Wang J, Zhu D, Ren X, Ge H, Shen L. Angew. Chem. Int. Ed. 2009; 48: 168
- 5c Sarkar A, Roy R, Chakraborti AK. Chem. Commun. 2011; 47: 4538
- 5d Myles L, Gore R, Spulak M, Gathergood N, Connon SJ. Green Chem. 2010; 12: 1157
- 6a Sawant AD, Raut DG, Darvatkar NB, Salunkhe MM. Green Chem. Lett. Rev. 2011; 4: 41
- 6b Ranu BC, Banerjee S. Org. Lett. 2005; 7: 3049
- 6c Chakraborti AK, Roy SR. J. Am. Chem. Soc. 2009; 131: 6902
- 6d Myles L, Gathergood N, Connon SJ. Chem. Commun. 2013; 49: 5316
- 6e Kumar A, Srivastava S, Gupta G, Kumar P, Sarkar J. RSC Adv. 2013; 3: 3548
- 6f Zhang L, Luo S, Mi X, Liu S, Qiao Y, Xu H, Cheng J.-P. Org. Biomol. Chem. 2008; 6: 567
- 6g Li D, Shi F, Peng J, Guo S, Deng Y. J. Org. Chem. 2004; 69: 3582
- 6h Giernoth R. Angew. Chem. Int. Ed. 2010; 49: 2834
- 6i Davis JH. Jr. Chem. Lett. 2004; 33: 1072
- 6j Lee S.-G. Chem. Commun. 2006; 1049
- 6k Winkel A, Reddy PV. G, Wilhelm R. Synthesis 2008; 999
- 6l Darvatkar NB, Deorukhkar AR, Bhilare SB, Raut DG, Salukhe MM. Synth. Commun. 2008; 38: 3508
- 7a Cole AC, Jensen JL, Ntai I, Tran KL. T, Weaver KJ, Forbes DC, Davis JH. J. Am. Chem. Soc. 2002; 124: 5962
- 7b Forbes DC, Weaver KJ. J. Mol. Catal. A: Chem. 2004; 214: 129
- 7c Guia J, Bana H, Cong X, Zhang X, Hu Z, Sun Z. J. Mol. Catal. A: Chem. 2005; 225: 27
- 7d Hubbard A, Okazaki T, Laali KK. Aust. J. Chem. 2007; 60: 923
- 7e Xu D.-Q, Wu J, Luo S.-P, Zhang J.-X, Wu J.-Y, Du X.-H, Xu Z.-Y. Green Chem. 2009; 11: 1239
- 7f Zhao YW, Long JX, Deng FG, Liu XF, Li Z, Xia CG, Peng JJ. Catal. Commun. 2009; 10: 732
- 7g Liu X, Ma H, Wu Y, Wang C, Yang M, Yana P, Welz-Biermann U. Green Chem. 2011; 13: 697
- 8a Rahman M, Sarkar A, Ghosh M, Majee A, Hajra A. Tetrahedron Lett. 2014; 55: 235
- 8b Santra S, Majee A, Hajra A. Tetrahedron Lett. 2011; 52: 3825
- 8c Das S, Rahman M, Kundu D, Majee A, Hajra A. Can. J. Chem. 2010; 88: 150
- 9a Desiraju GR, Steiner T. The Weak Hydrogen Bond in Structural Chemistry and Biology . Oxford University Press; Oxford: 1999
- 9b Wallance KJ, Belcher WJ, Turner DR, Syed KF, Steed JW. J. Am. Chem. Soc. 2003; 125: 9699
- 9c Dong K, Zhang S, Wang D, Yao X. J. Phys. Chem. A 2006; 110: 9775
- 9d Chang H.-C, Jiang J.-C, Tsai W.-C, Chen G.-C, Lin SH. J. Phys. Chem. B 2006; 110: 3302
- 9e Zhang L, Fu X, Gao G. ChemCatChem 2011; 3: 1359
- 9f Ghosh K, Ali SS, Joardar S. Tetrahedron Lett. 2012; 53: 2054
- 9g Aggarwal A, Lancaster NL, Sethi AR, Welton T. Green Chem. 2002; 4: 517
- 9h Cammarata L, Kazarian SG, Salter PA, Welton T. Phys. Chem. Chem. Phys. 2001; 3: 5192
- 9i Gholap AR, Venkatesan K, Daniel T, Lahoti RJ, Srinivasan KV. Green Chem. 2003; 5: 693
- 9j Fu X, Zhang Z, Li C, Wang L, Ji H, Yang Y, Zou T, Gao G. Catal. Commun. 2009; 10: 665
- 10 Chakraborti AK, Roy SR, Kumar D, Chopra P. Green Chem. 2008; 10: 1111
- 11 Westermann N. Angew. Chem. Int. Ed. 2003; 42: 151
- 12 Ruano JL. G, Cantarero JL.-C, de Haro T, Aleman J, Cid MB. Tetrahedron 2006; 62: 12197
- 13 Kundu D, Debnath RK, Majee A, Hajra A. Tetrahedron Lett. 2009; 50: 6998
- 14a Seebach D, Matthews JL. Chem. Commun. 1997; 2015
- 14b Enantioselective Synthesis of β-Amino Acids . Juaristi E. Wiley-VCH; New York: 1997
- 15 Kundu D, Majee A, Hajra A. Catal. Commun. 2010; 11: 1157
- 16a Wolff A, Boechmer V, Vogt W, Ugozzoli F, Andreetti GD. J. Org. Chem. 1990; 55: 5665
- 16b Das B, Laxminarayana K, Krishnaiah M, Srinivas Y. Synlett 2007; 3107
- 16c Vander de Water RW, Pettus TR. R. Tetrahedron 2002; 58: 5367
- 17 Selvam NP, Perumal PT. Tetrahedron Lett. 2006; 47: 7481
- 18 Das B, Laxminarayana K, Ravikanth B, Rao BR. J. Mol. Catal. A: Chem. 2007; 261: 180
- 19 Hong M, Cai C, Yi WB. Chin. Chem. Lett. 2011; 22: 322
- 20 Mahdavinia GH, Bigdeli MA, Heravi MM. Chin. Chem. Lett. 2008; 19: 1171
- 21 The Chemistry of Heterocycles . 2nd ed.; Eicher T, Hauptmann S, Speicher A. Wiley-VCH; Weinheim: 2003: 99
- 22 Wynne JH, Stalick WM. J. Org. Chem. 2002; 67: 5850
- 23 Kundu D, Bagdi AK, Majee A, Hajra A. Synlett 2011; 1165
- 24 Laufer SA, Zimmermann W, Ruff KJ. J. Med. Chem. 2004; 47: 6311
- 25a Kuroda N, Shimoda R, Wada M, Nakashima K. Anal. Chim. Acta 2000; 403: 131
- 25b Abrahams SL, Hazen RJ, Batson AG, Phillips AP. J. Pharmacol. Exp. Ther. 1989; 249: 359
- 26 Ucucu U, Karaburun NG, Iskdag I. Farmaco 2001; 56: 285
- 27a Dupont J, de Souza RF, Suarez PA. Z. Chem. Rev. 2002; 102: 3667
- 27b Nara SJ, Naik PU, Harjani JR, Salunkhe MM. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2001; 45: 2257
- 27c Chowdhury S, Mohan RS, Scott JL. Tetrahedron 2007; 63: 2363
- 28a Bourissou D, Guerret O, Gabbai FP, Bertrand G. Chem. Rev. 2000; 100: 39
- 28b Arnold PL, Liddle ST. Chem. Commun. 2006; 3959
- 28c Kuhl O. Chem. Soc. Rev. 2007; 36: 592
- 29 Rahman M, Kundu D, Bagdi AK, Majee A, Hajra A. J. Heterocycl. Chem. 2012; 49: 1224
- 30 Butler RN. Comprehensive Heterocyclic Chemistry . Vol. 4. Katritzky AR, Rees CW, Scriven EF. V. Pergamon; Oxford: 1996
- 31 Huisgen R, Sauer J, Sturm HJ, Markgraf JH. Chem. Ber. 1960; 93: 2106
- 32 Wittenberger SJ. Org. Prep. Proced. Int. 1994; 26: 499
- 33a Martella DJ. US 4,632,674, 1986 ; Chem. Abstr. 1987, 106, 141002w.
- 33b Wu JZ, Arai M, Matsuzawa T, Tamura M. Kayaku Gakkaishi 1994; 55: 103
- 34 Rahman M, Roy A, Ghosh M, Mitra S, Majee A, Hajra A. RSC Adv. 2014; 4: 6116
- 35 Gang Q, Wei L, Zhining B. Chin. J. Chem. 2011; 29: 131
- 36 He J, Li B, Chen F, Xu Z, Yin G. J. Mol. Catal. A: Chem. 2009; 304: 135
- 37 Teimouri A, Chermahini AN. Polyhedron 2011; 30: 2606
- 38 Aridoss G, Laal KK. Eur. J. Org. Chem. 2011; 6343
- 39 Cleary T, Rawalpally T, Kennedy N, Chavez F. Tetrahedron Lett. 2010; 51: 1533
- 40 Zhang FY. W, Kwok H, Chan AS. C. Tetrahedron: Asymmetry 2001; 12: 2337
- 41 Zhou B, Chen W. J. Chem. 2013; Article ID 280585; http://dx.doi.org/10.1155/2013/280585
- 42a Beller M, Tafesh AM In Applied Homogeneous Catalysis with Organometallic Compounds . Hermann WA, Cornils B. Wiley-VCH; Weinheim: 1996: 187
- 42b van Leeuwen PW. N. M In Homogeneous Catalysis, Understanding the Art . Kluwer Academic; Dordrecht: 2004
- 42c Catalytic Carbonylation Reactions. In Topics in Organometallic Chemistry. Beller M. Springer; Berlin: 2006
- 43 Reman WG, De Boer GB. J, Van Langen SA. J, Nahuijsen A. EP 411,721, 1991
- 44a Bianchini C, Meli A. Coord. Chem. Rev. 2002; 35: 225
- 44b Zuideveld MA, Kramer PC. J, van Leeuwen PW. N. M, Klusener PA. A, Stil HA, Roobek CF. J. Am. Chem. Soc. 1998; 120: 7977
- 45 Khokarale SG, García-Suárez EJ, Xiong J, Mentzel UV, Fehrmann R, Riisager A. Catal. Commun. 2014; 44: 73
- 46a Varache-Lemebge M, Nuhrich A, Zemb V, Devaux G, Vacher P, Vacher AM, Dufy B. Eur. J. Med. Chem. 1996; 31: 547
- 46b Alker D, Campbell SF, Cross PE, Burges RA, Carter AJ, Gardiner DG. J. Med. Chem. 1990; 33: 585
- 47a Rudler H, Parlier A, Sandoval-Chavez C, Herson P, Daran J.-C. Angew. Chem. Int. Ed. 2008; 47: 6843
- 47b Nguyen TB, Bousserouel H, Wang Q, Guritte F. Org. Lett. 2010; 12: 4705
- 47c Pelletier G, Bechara WS, Charette AB. J. Am. Chem. Soc. 2010; 132: 12817
- 48 Hilgeroth A, Lilie H. Eur. J. Med. Chem. 2003; 38: 495
- 49 Bagdi AK, Kundu D, Majee A, Hajra A. Curr. Organocatal. 2016; in press; DOI: 10.2174/2213337202666150414201734
- 50 Ghosal NC, Santra S, Das S, Hajra A, Zyryanov GV, Majee A. Green Chem. 2016; 18 in press; DOI: 10.1039/C5GC01323B