Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2016; 48(09): 1331-1343
DOI: 10.1055/s-0035-1561386
DOI: 10.1055/s-0035-1561386
paper
Facile Synthesis of Substituted 4-Alkoxy-2-oxazolines and Exploration of the Reaction Mechanism
Further Information
Publication History
Received: 10 December 2015
Accepted after revision: 22 January 2016
Publication Date:
25 February 2016 (online)
Abstract
Substituted 4-alkoxy-2-oxazolines have been synthesized via the reaction of nitriles with beta-hydroxyacetals promoted by trifluoromethanesulfonic acid. The reaction is proposed to be initiated by the protonation of the acetals to produce carbocations that are then attacked by nitrogen atom of the nitriles, followed by an intramolecular cyclization reaction to form the 4-alkoxy-2-oxazolines. The proposed reaction mechanism has been validated by quantum chemistry calculations, key intermediate synthesis, and NMR spectra.
Key words
4-alkoxy-2-oxazoline - benzonitrile - β-hydroxyacetal - trifluoromethanesulfonic acid - reaction mechanism - quantum chemistry calculationSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561386.
- Supporting Information
-
References
- 1 These authors contributed equally to this work.
- 2a Laphookhieo S, Phungpanya C, Tantapakul C, Techa S, Tha-in S, Narmdorkmai W. J. Braz. Chem. Soc. 2011; 22: 176
- 2b Fu P, Liu P, Qu H, Wang Y, Chen D, Wang H, Li J, Zhu W. J. Nat. Prod. 2011; 74: 2219
- 3a Ishida T, Inoue M, Hamada Y, Kato S, Shioiri T. J. Chem. Soc., Chem. Commun. 1987; 370
- 3b Moraski GC, Chang M, Villegas-Estrada A, Franzblau SG, Möllmann U, Miller MJ. Eur. J. Med. Chem. 2010; 45: 1703
- 4a Perrone S, Cannazza G, Caroli A, Salomone A, Troisi L. Tetrahedron 2014; 70: 6938
- 4b Morofuji T, Shimizu A, Yoshida J. J. Am. Chem. Soc. 2015; 137: 9816
- 5a Shang M, Sun SZ, Dai HX, Yu JQ. J. Am. Chem. Soc. 2014; 136: 3354
- 5b Michel BW, Steffens LD, Sigman MS. J. Am. Chem. Soc. 2011; 133: 8317
- 5c Lundin PM, Esquivias J, Fu GC. Angew. Chem. Int. Ed. 2009; 48: 154
- 5d Detz RJ, Delville MM. E, Hiemstra H, van Maarseveen JH. Angew. Chem. Int. Ed. 2008; 47: 3777
- 6a Cai AJ, Zheng Y, Ma JA. Chem. Commun. 2015; 51: 8946
- 6b Gao WC, Hu F, Huo YM, Chang HH, Li X, Wei WL. Org. Lett. 2015; 17: 3914
- 6c Samimi HA, Yamin BM, Saberi F. Synthesis 2015; 47: 129
- 6d Wilding B, Vesela AB, Perry JJ. B, Black GW, Zhang M, Martinkova L, Klempier N. Org. Biomol. Chem. 2015; 13: 7803
- 6e Yu F, Chen PH, Liu GS. Org. Chem. Front. 2015; 2: 819
- 6f Yu JP, Tian H, Gao C, Yang HJ, Jiang YY, Fu H. Synlett 2015; 26: 676
- 7 Baba D, Fuchigami T. Tetrahedron Lett. 2003; 44: 3133
- 8 Guirado A, Andreu R, Martiz B, Gálvez J. Tetrahedron 2004; 60: 987
- 9a Pinner A. Ber. Dtsch. Chem. Ges. 1883; 16: 1643
- 9b Pinner A, Klein F. Ber. Dtsch. Chem. Ges. 1877; 10: 1889
- 9c Pinner A, Klein F. Ber. Dtsch. Chem. Ges. 1878; 11: 1475
- 10a Krimen LI, Cota DJ. The Ritter Reaction . In Organic Reactions . Vol. 17. Wiley; 2011: 213-325
- 10b Ritter JJ, Minieri PP. J. Am. Chem. Soc. 1948; 70: 4045
- 10c Ritter JJ, Kalish J. J. Am. Chem. Soc. 1948; 70: 4048
- 11 Reider PJ, Conn RS. E, Davis P, Grenda VJ, Zambito AJ, Grabowski EJ. J. J. Org. Chem. 1987; 52: 3326