Synthesis 2016; 48(21): 3794-3802
DOI: 10.1055/s-0035-1561474
paper
© Georg Thieme Verlag Stuttgart · New York

2,4-Dinitrophenyl and Pentaerythrityltrinitrate as Explosophoric Units in the Synthesis of New Energetic Materials

M. A. Romero*
a   Sociedad Química de México, Barranca del Muerto No. 26, Col. Crédito Constructor, Del. Benito Juárez, C.P. 03940, México D.F., Mexico   Email: drmiguelromero@yahoo.ca
,
J. C. Cortes Morales
b   Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P. 09340, México D. F., Mexico
,
E. González-Zamora
b   Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P. 09340, México D. F., Mexico
,
A. Gutiérrez-Carillo
b   Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P. 09340, México D. F., Mexico
› Author Affiliations
Further Information

Publication History

Received: 26 April 2016

Accepted after revision: 13 May 2016

Publication Date:
28 June 2016 (online)


In memory of Professor Edward Piers

Abstract

Three novel energetic compounds were prepared from the common precursor 1-fluoro-2,4-dinitrobenzene by using nucleophilic aromatic substitution as a key step with pentaerythritol, pentaerythritoltrinitrate, or glycidol. The thermal stability of 3-(2,4-dinitrophen­oxy)-2,2-bis[(nitrooxy)methyl]propyl nitrate was assessed by differential scanning calorimetry and its X-ray structure was determined. In light of the success in using 2,4-dinitroanisole as an additive in explosive formulations, some of the analogous compounds prepared in the present study may be considered as suitable materials for diverse composite energetic material formulations.

Supporting Information

 
  • References

  • 1 Gottlieb HB. J. Am. Chem. Soc. 1936; 58: 532
  • 2 Sanger F. Biochem. J. 1945; 39: 507
  • 3 http://www.chemicalbook.com/ProductMSDSDetailCB9442373_EN.htm (accessed May, 2016).
    • 4a Cao R, Mei D. Xi’an Jiaotong Daxue Xuebao 1994; 28: 7
    • 4b Davies P. J., Provatas A.; Characterization of 2,4-Dinitroanisole: An Ingredient for use in Low Sensitivity Melt Cast Formulations; Weapons Systems Division, Defence Science and Technology Organization, Australian Government, Department of Defence, DSTO-TR-1904.

      See for example:
    • 5a den Otter HP. Recl. Trav. Chim. Pays-Bas 1938; 57: 13
    • 5b Waldkotter KF. Recl. Trav. Chim. Pays-Bas 1939; 58: 132
    • 5c Dame PA, Hoffman EJ. J. Am. Chem. Soc. 1919; 41: 1013
    • 5d Marshall J. Ind. Eng. Chem. 1920; 12: 336
    • 5e Urbański T. Chemistry and Technology of Explosives, Vol. I . Pergamon Press; Oxford: 1964
    • 5f Urbański T. Chemistry and Technology of Explosives . Vol. 3 Pergamon Press; Oxford: 1967: 61-62
    • 6a Beckwith AL, Leahy GD, Miller J. J. Chem. Soc. 1952; 3552
    • 6b Briner GP, Liveris M, Lutz PG, Miller J. J. Chem. Soc. 1954; 1265
    • 6c Bunnett JF, Merrit WD. Jr. J. Am. Chem. Soc. 1957; 79: 5967
  • 7 Moran RC. US Patent 1560427, 1925
  • 8 Theoretical densities were calculated with ACD/Labs Percepta Platform - PhysChem Module.
    • 9a Blanksma JJ, Fohr PG. Recl. Trav. Chim. Pays-Bas 1946; 65: 711
    • 9b Meyer R, Köhler J, Homburg A. Explosives . 5th ed. Wiley–VCH; Weinheim: 2002: 153
    • 10a Golding P, Millar RW, Paul NC, Richards DH. R. Tetrahedron Lett. 1988; 29: 2731
    • 10b Golding P, Millar RW, Paul NC, Richards DH. R. Tetrahedron 1993; 49: 7037
    • 11a Nichols PL. Jr, Magnusson AB, Ingham JD. J. Am. Chem. Soc. 1953; 75: 4255
    • 11b Ingham JD, Nichols PL. Jr. J. Am. Chem. Soc. 1954; 76: 4477
  • 12 Lee J.-S, Hsu C.-K, Chang C.-L. Thermochim. Acta 2002; 392-393: 173
  • 13 Meyer R, Köhler J, Homburg A. Explosives . 6th ed. Wiley–VCH; Weinheim: 2007: 251
  • 14 Camp AT, Marans NS, Elrick DE, Preckel RF. J. Am. Chem. Soc. 1955; 77: 751
  • 15 Chavez DE, Myers TW, Veauthier JM, Greenfield MT, Scharff RJ, Parrish DA. Synlett 2015; 26: 2029
    • 16a Rothstein LP, Petersen R. Propellants, Explos., Pyrotech. 1979; 4: 56
    • 16b Rothstein LP, Petersen R. Propellants, Explos., Pyrotech. 1981; 6: 91
    • 16c Agrawal JP. High Energy Materials. Propellants, Explosives and Pyrotechnics. Wiley–VCH; Weinheim: 2010: 30-31
  • 17 Keshavarz MH, Pouretedal HR. J. Hazard. Mater. 2005; A124: 27
  • 18 Agrawal JP. High Energy Materials. Propellants, Explosives and Pyrotechnics. Wiley–VCH; Weinheim: 2010: 83-89
    • 19a Axthammer QJ, Krumm B, Klapötke TM. Eur. J. Org. Chem. 2015; 723
    • 19b Klapötke TM, Witkowski TG, Wilk Z, Hadzik J. Propellants, Explos., Pyrotech. 2016; 41: 92
  • 20 Romero MA. J. Mex. Chem. Soc. 2014; 58: 113
  • 21 http://www.inchem.org/documents/icsc/icsc/eics0967.htm (accessed May 2016).
  • 22 Manelis GB, Nazin GM, Rubtsov YI, Strunin VA. Thermal Decomposition and Combustion of Explosives and Propellants . Taylor & Francis; New York: 2003