Synthesis 2016; 48(13): 2093-2104
DOI: 10.1055/s-0035-1561583
paper
© Georg Thieme Verlag Stuttgart · New York

Concise Total Syntheses of (±)-Joubertiamine, (±)-O-Methyl­joubertiamine, (±)-3′-Methoxy-4′-O-methyljoubertiamine, (±)-Mesembrane, and (±)-Crinane

Mrinal Kanti Das
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India   Email: alakesh@iiserb.ac.in
,
Subhadip De
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India   Email: alakesh@iiserb.ac.in
,
Shubhashish,
Alakesh Bisai*
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India   Email: alakesh@iiserb.ac.in
› Author Affiliations
Further Information

Publication History

Received: 26 December 2015

Accepted after revision: 22 February 2016

Publication Date:
18 March 2016 (online)


Abstract

A method to access cis-3a-aryloctahydroindole alkaloids has been developed through a key strategy involving Eschenmoser–Claisen rearrangement of allylalcohol. This approach gives us an opportunity to access the all-carbon quaternary center required for cis-3a-aryloctahydroindole alkaloids. Subsequent simple allylic oxidation of Eschenmoser–Claisen products and synthetic elaborations (reductions/oxidations) enabled the total syntheses of the title compounds to be completed in good yields in a few steps. The strategic viability was further tested in the total syntheses of Amaryllidaceae alkaloids (±)-mesembrane and (±)-crinane. Towards this end, we synthesized advanced intermediate keto-aldehydes from Eschenmoser–Claisen rearrangement products through iodolactonization followed by elaboration involving reduction and oxidation steps.

Supporting Information

 
  • References


    • For isolation of Sceletium alkaloids 1, see:
    • 1a Jeffs PW, Ahmann G, Campbell HF, Farrier DS, Ganguli G, Hawks RL. J. Org. Chem. 1970; 35: 3512
    • 1b Capps TM, Hargrave KW, Jeffs PW, McPhail AT. J. Chem. Soc., Perkin Trans. 2 1977; 1098
    • 1c Nieuwenhuis JJ, Strelow F, Strauss HF, Wiechers A. J. Chem. Soc., Perkin Trans. 1 1981; 284

      For synthetic approaches to seco-mesembrane alkaloids 1, see:
    • 2a Martin SF, Puckette TA, Colapret JA. J. Org. Chem. 1979; 44: 3391
    • 2b Jeffs PW, Capps TM, Redfearn R. J. Org. Chem. 1982; 47: 3611
    • 2c Jeffs PW, Molina G, Cass MW, Cortese NA. J. Org. Chem. 1982; 47: 3871
    • 2d Jeffs PW, Molina G, Hauck PR, Wolfram J. J. Org. Chem. 1982; 47: 3876
    • 2e Jeffs PW, Cortese NA, Wolfram J. J. Org. Chem. 1982; 47: 3881
    • 2f Jeffs PW, Redfearn R, Wolfram J. J. Org. Chem. 1983; 48: 3861
    • 2g Hoshino O, Ishizaki M, Sawaki S, Yuasa M, Umezawa B. Chem. Pharm. Bull. 1988; 36: 3373
    • 2h Asaoka M, Fujii N, Takei H. Chem. Lett. 1988; 1655
    • 2i Taber DF, Mack JF, Rheingold AL, Geib SJ. J. Org. Chem. 1989; 54: 3831
    • 3a Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis. Christoffers J, Baro A. Wiley-VCH; Weinheim: 2005
    • 3b For numerous examples, see: Nicolaou KC, Sorensen EJ. Classics in Total Synthesis . 1st ed. Wiley-VCH; Weinheim: 1996
    • 3c Nicolaou KC, Snyder SA. Classics in Total Synthesis II . 1st ed. Wiley-VCH; Weinheim: 2003

    • For reviews, see:
    • 3d Corey EJ, Guzman-Perez A. Angew. Chem. Int. Ed. 1998; 37: 388
    • 3e Christoffers J, Mann A. Angew. Chem. Int. Ed. 2001; 40: 4591
    • 3f Trost BM, Jiang CH. Synthesis 2006; 369
    • 3g Christoffers J, Baro A. Adv. Synth. Catal. 2005; 347: 1473
    • 4a Jeffs PM In The Alkaloids . Vol. 19. Rodrigo RG. A. Academic Press; New York: 1981: 1-80
    • 4b Martin SF In The Alkaloids . Vol. 30. Brossi A. Academic Press; New York: 1987: 251-376
    • 4c Jeffs PM In MTP International Review of Science, Alkaloids, Organic Chemistry, Series One . Vol. 9. Hey DH, Wiesner KF. Butterworth; London: 1973: 273-318
    • 5a Lin L.-Z, Hu S.-F, Chai H.-B, Pengsuparp T, Pezzuto JM, Cordell GA, Ruangrungsi N. Phytochemistry 1995; 40: 1295
    • 5b For a detailed report on chemistry, biology, and medicinal potential of narciclasine and its congeners, see: Kornienko A, Evidente A. Chem. Rev. 2008; 108: 1982

      For reviews on Amaryllidaceae alkaloids, see:
    • 6a Martin SF. The Alkaloids . Vol. 30. Brossi A. Academic; New York: 1987: 251-376
    • 6b Hoshino O. The Alkaloids . Cordell GA. Academic; New York: 1998
    • 6c Tsuda Y. Heterocycles 1978; 10: 555
    • 6d Lewis JR. Nat. Prod. Rep. 2002; 19: 223
    • 6e Jin Z, Li Z, Hyang R. Nat. Prod. Rep. 2002; 19: 454
    • 6f Jin Z. Nat. Prod. Rep. 2005; 22: 111
    • 6g Jin Z. Nat. Prod. Rep. 2009; 26: 363
    • 7a Overman LE, Mendelson LT. J. Am. Chem. Soc. 1981; 103: 5579
    • 7b Martin SF, Campbell CL. J. Org. Chem. 1988; 53: 3184
    • 7c Pearson WH, Lovering FE. J. Org. Chem. 1998; 63: 3607
    • 7d Lebeuf R, Robert F, Schenk K, Landais Y. Org. Lett. 2006; 8: 4755
    • 7e Zhang F.-M, Tu Y.-Q, Liu J.-D, Fan X.-H, Shi L, Hu X.-D, Wang S.-H, Zhang Y.-Q. Tetrahedron 2006; 62: 9446
    • 7f McNulty J, Nair JJ, Codina C, Bastida J, Pandey S, Gerasimoff J, Griffin C. Phytochemistry 2007; 68: 1068
    • 8a Papas TS, Sandhaus L, Chirigos MA, Furusawa E. Biochem. Biophys. Res. Commun. 1973; 52: 88
    • 8b Furusawa E, Furusawa S, Sokugawa L. Chemotherapy 1983; 29: 294
    • 8c Furusawa E, Lum MK. M, Furusawa S. Chemotherapy 1981; 27: 277
    • 8d Abdel-Halim OB, Morikawa T, Ando S, Matsuda H, Yoshikawa M. J. Nat. Prod. 2004; 67: 1119
    • 8e Likhitwitayawuld K, Angerhofer CK, Chai H, Pezzuto JM, Cordell GA, Ruangrungsi N. J. Nat. Prod. 1993; 56: 1331
    • 8f Houghton PJ, Agbedahunsi JM, Adegbulugbe A. Phytochemistry 2004; 65: 2893
  • 9 Jeffs PW, Campbell HF, Farrier DS, Ganguli G, Martin NH, Molina G. Phytochemistry 1974; 13: 933

    • Approaches to cis-3a-aryloctahydroindole alkaloids, see:
    • 10a (±)-Martidine (3d): Pandey G, Gupta NR, Pimpalpalle TM. Org. Lett. 2009; 11: 2547
    • 10b (–)-Mesembranol (ent-1b): Chida N, Sugihara K, Amano S, Ogawa S. J. Chem. Soc., Perkin Trans. 1 1997; 275
    • 10c Asaoka M, Fuji N, Takei H. Chem. Lett. 1988; 17: 1655
    • 10d Nieuwenhius JJ, Strauss HF, Wiechers A. J. Chem. Soc., Perkin Trans. 1 1981; 284
    • 10e Strauss HF, Wiechers A. Tetrahedron Lett. 1979; 4495
    • 10f Psotta K, Wiechers A. Tetrahedron 1979; 35: 255
    • 10g Strauss HF, Wiechers A. Tetrahedron 1978; 34: 127
    • 10h Schwenker P.-DG, Metz G. Arch. Pharm. (Weinheim, Ger.) 1968; 301: 592

      For total synthesis of crinane (3a), see:
    • 11a Kano T, Hayashi Y, Maruoka K. J. Am. Chem. Soc. 2013; 135: 7134
    • 11b Padwa A, Brodney MA, Dimitroff M, Liu B, Wu TH. J. Org. Chem. 2001; 66: 3119
    • 11c Schkeryantz JM, Pearson WH. Tetrahedron 1996; 52: 3107
    • 11d Keck GE, Webb RR. J. Am. Chem. Soc. 1981; 103: 3173
    • 11e Keck GE, Webb II RR. J. Org. Chem. 1982; 47: 1302

    • For total synthesis of mesembrane (2a), see:
    • 11f Taber DF, Neubert TD. J. Org. Chem. 2001; 66: 143
    • 11g Rigby JH, Dong W. Org. Lett. 2000; 2: 1673
    • 11h Ogasawara K, Tamada O. Tetrahedron Lett. 1998; 39: 7747
    • 11i Mori M, Kuroda S, Zhang C, Sato Y. J. Org. Chem. 1997; 62: 3263
    • 11j Denmark SE, Marcin LR. J. Org. Chem. 1997; 62: 1675
    • 11k Martin SF, Puckette TA, Colapret JA. J. Org. Chem. 1979; 44: 3391
  • 12 For a preliminary communication from our group, see: Das MK, De S, , Shubhashish Bisai A. Org. Biomol. Chem. 2015; 13: 3585

    • For iodolactonization of Eschenmoser–Claisen products, see:
    • 13a Bisai V, Sarpong R. Org. Lett. 2010; 12: 2551
    • 13b Zhu L, Luo J, Hong R. Org. Lett. 2014; 16: 2162
    • 14a Hayashi K, Tanimoto H, Zhang H, Morimoto T, Nishiyama Y, Kakiuchi K. Org. Lett. 2012; 14: 5728
    • 14b Asaoka M, Fuji N, Takei H. Chem. Lett. 1988; 17: 1655
    • 14c Bruderer VH, Bernauer K. Helv. Chim. Acta 1983; 66: 570
    • 14d Wick AE, Felix D, Steen K, Eschenmoser A. Helv. Chim. Acta 1964; 47: 2425
    • 14e For a review, see: Castro AM. M. Chem. Rev. 2004; 104: 2939
    • 15a Stork G, Danheiser RL. J. Org. Chem. 1973; 38: 1775

    • For recent examples, see:
    • 15b Bisai A, West SP, Sarpong R. J. Am. Chem. Soc. 2008; 130: 7222
    • 15c Bennett NB, Hong AY, Harned AM, Stoltz BM. Org. Biomol. Chem. 2012; 10: 56
    • 15d Kakde BN, Bhunia S, Bisai A. Tetrahedron Lett. 2013; 54: 1436
    • 15e Parida A, Sharique M, Kakde BN, Ghosh S, Bisai A. Synthesis 2015; 47: 2965
    • 16a Luche JL. J. Am. Chem. Soc. 1978; 100: 2226
    • 16b Molander GA. Chem. Rev. 1992; 92: 29
    • 16c West SP, Bisai A, Lim AD, Narayan RR, Sarpong R. J. Am. Chem. Soc. 2009; 131: 11187
    • 17a Wick AE, Felix D, Steen K, Eschenmoser A. Helv. Chim. Acta 1964; 47: 2425
    • 17b Wick AE, Felix D, Gschwend-Steen K, Eschenmoser A. Helv. Chim. Acta 1969; 52: 1030
  • 18 Meerwein H, Florian W, Schön N, Stopp G. Justus Liebigs Ann. Chem. 1961; 641: 1

    • For use of Eschenmoser–Claisen rearrangement in total syntheses of natural products, see:
    • 19a Mulzer J, Bats JW, List B, Optaz T, Trauner D. Synlett 1997; 441
    • 19b Kato T, Tanimoto H, Yamada H, Chida N. Heterocycles 2010; 82: 563
  • 20 Selective reduction of amide functionality of (±)-12a with either LiBH4 or LiEt3BH were unsuccessful and always afforded (±)-13d in 75–82% yields with ca. 4:1 dr (Scheme 10).
  • 21 Chidambaram N, Chandrasekaran S. J. Org. Chem. 1987; 52: 5048
    • 22a Omura K, Swern D. Tetrahedron 1978; 36: 1651
    • 22b Tojo G, Fernandez MI. Oxidation of Alcohols to Aldehyde and Ketones: A Guide to Current Common Practice. Springer; New York: 2006
  • 23 For a Bischler–Napieralski reaction of carbamate for the synthesis of trans-dihydronarciclasine, see: Tam NT, Cho C.-G. Org. Lett. 2008; 10: 601
    • 24a Corey EJ, Bakshi R, Shibata S. J. Am. Chem. Soc. 1987; 109: 7925
    • 24b Corey EJ, Link JO. J. Am. Chem. Soc. 1992; 114: 1906
    • 24c For numerous examples, see: Corey EJ, Helal CJ. Angew. Chem. Int. Ed. 1998; 37: 1986