Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2016; 48(12): 1892-1901
DOI: 10.1055/s-0035-1561590
DOI: 10.1055/s-0035-1561590
special topic
Acid-Catalyzed Ring-Opening Cyclization of Spirocyclopropanes for the Construction of a 2-Arylbenzofuran Skeleton: Total Synthesis of Cuspidan B
Further Information
Publication History
Received: 30 January 2016
Accepted after revision: 01 March 2016
Publication Date:
05 April 2016 (online)
Abstract
Acid-catalyzed ring-opening cyclization of cyclohexane-1,3-dione-2-spirocyclopropanes under metal-free conditions proceeded smoothly at room temperature to provide 2-aryl-3,5,6,7-tetrahydro-1-benzofuran-4(2H)-ones in excellent yields without the formation of 3-substituted isomers. The obtained product was converted into a 2-arylbenzofuran derivative via a synthetically useful 2-aryl-2,3-dihydrobenzofuran intermediate. Furthermore, the first total synthesis of cuspidan B was achieved by using the present method.
Key words
cyclopropanes - benzofurans - natural products - ring opening - cyclization - total synthesisSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561590.
- Supporting Information
-
References
- 1 Shimokawa Y, Hirasawa Y, Kaneda T, Hadi AH. A, Morita H. Chem. Pharm. Bull. 2012; 60: 790
- 2a Pacher T, Seger C, Engelmeier D, Vajrodaya S, Hofer O, Greger H. J. Nat. Prod. 2002; 65: 820
- 2b Sastraruji T, Chaiyong S, Jatisatienr A, Pyne SG, Ung AT, Lie W. J. Nat. Prod. 2011; 74: 60
- 3 Kyekyeku JO, Kusari S, Adosraku RK, Zühlke S, Spiteller M. Fitoterapia 2016; 108: 41
- 4 Ni G, Zhang Q.-J, Zheng Z.-F, Chen R.-Y, Yu D.-Q. J. Nat. Prod. 2009; 72: 966
- 5 Na MK, Hoang DM, Njamen D, Mbafor JT, Fomum ZT, Thuong PT, Ahn JS, Oh WK. Bioorg. Med. Chem. Lett. 2007; 17: 3868
- 6a Flynn BL, Hamel E, Jung MK. J. Med. Chem. 2002; 45: 2670
- 6b Aslam SN, Stevenson PC, Kokubun T, Hall DR. Microbiol. Res. 2009; 164: 191
- 6c Saha AK, Yu X, Lin J, Lobera M, Sharadendu A, Chereku S, Schutz N, Segal D, Marantz Y, McCauley D, Middleton S, Siu J, Bürli RW, Buys J, Horner M, Salyers K, Schrag M, Vargas HM, Xu Y, McElvain M, Xu H. ACS Med. Chem. Lett. 2011; 2: 97
- 6d Rizzo S, Tarozzi A, Bartolini M, Da Cista G, Bisi A, Gobbi S, Belluti F, Ligresti A, Allarà M, Monti J.-P, Andrisano V, Di Marzo V, Hrelia P, Rampa A. Eur. J. Med. Chem. 2012; 58: 519
- 6e Salomé C, Ribeiro N, Chavagnan T, Thuaud F, Serova M, de Gramont A, Faivre S, Raymond E, Désaubry L. Eur. J. Med. Chem. 2014; 81: 181
- 6f Hsieh J.-F, Lin W.-J, Huang K.-F, Liao J.-H, Don M.-J, Shen C.-C, Shiao Y.-J, Li W.-T. Eur. J. Med. Chem. 2015; 93: 443
- 7a Rao ML. N, Awasthi DK, Talode JB. Tetrahedron Lett. 2012; 53: 2662
- 7b Liu J, Chen W, Ji Y, Wang L. Adv. Synth. Catal. 2012; 354: 1585
- 7c Ookubo Y, Wakamiya A, Yorimitsu H, Osuka A. Chem. Eur. J. 2012; 18: 12690
- 7d Rao ML. N, Jadhav DN, Dasgupta P. Eur. J. Org. Chem. 2013; 781
- 7e Wang X, Wang X, Liu M, Ding J, Chen J, Wu H. Synthesis 2013; 45: 2241
- 7f Wang T, Shi S, Vilhelmsen MH, Zhang T, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2013; 19: 12512
- 7g Zhou R, Wang W, Jiang Z.-J, Wang K, Zheng X.-L, Fu H.-Y, Chen H, Li R.-X. Chem. Commun. 2014; 50: 6023
- 7h Chen J, Li J, Su W. Org. Biomol. Chem. 2014; 12: 4078
- 7i Moure MJ, SanMartin R, Domínguez E. Adv. Synth. Catal. 2014; 356: 2070
- 7j Murakami K, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2014; 53: 7510
- 7k Xu T, Zhang E, Wang D, Wang Y, Zou Y. J. Org. Chem. 2015; 80: 4313
- 7l Yin S.-C, Zhou Q, Zhao X.-Y, Shao L.-X. J. Org. Chem. 2015; 80: 8916
- 8a Ruan L, Shi M, Mao S, Yu L, Yang F, Tang J. Tetrahedron 2014; 70: 1065
- 8b Gao H, Xu Q.-L, Keene C, Kürti L. Chem. Eur. J. 2014; 20: 8883
- 8c Ghosh R, Stridfeldt E, Olofsson B. Chem. Eur. J. 2014; 20: 8888
- 8d Miyagi K, Moriyama K, Togo H. Heterocycles 2014; 89: 2122
- 9a Stevens RV. Acc. Chem. Res. 1977; 10: 193
- 9b Danishefsky S. Acc. Chem. Res. 1979; 12: 66
- 9c Paquette LA. Chem. Rev. 1986; 86: 733
- 9d Wong HN. C, Hon M.-Y, Tse C.-W, Yip Y.-C. Chem. Rev. 1989; 89: 165
- 9e Reinhold H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
- 9f Yu M, Pagenkopf BL. Tetrahedron 2005; 61: 321
- 10a Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
- 10b De Simone F, Waser J. Synthesis 2009; 3353
- 10c Campbell MJ, Johnson JS, Parsons AT, Pohlhaus PD, Sanders SD. J. Org. Chem. 2010; 75: 6317
- 10d Lebold TP, Kerr MA. Pure Appl. Chem. 2010; 82: 1797
- 10e Mel’nikov MY, Budynina EM, Ivanova OA, Trushkov IV. Mendeleev Commun. 2011; 21: 293
- 10f Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
- 10g Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
- 10h de Nanteuil F, De Simone F, Frei R, Benfatti F, Serrano E, Waser J. Chem. Commun. 2014; 50: 10912
- 10i Grover HK, Emmett MR, Kerr MA. Org. Biomol. Chem. 2015; 13: 655
- 11 Nambu H, Fukumoto M, Hirota W, Ono N, Yakura T. Tetrahedron Lett. 2015; 56: 4312
- 12 Nambu H, Fukumoto M, Hirota W, Yakura T. Org. Lett. 2014; 16: 4012
- 13a Yoshida J, Yano S, Ozawa T, Kawabata N. J. Org. Chem. 1985; 50: 3467
- 13b Hadjiarapoglou LP. Tetrahedron Lett. 1987; 28: 4449
- 13c Asouti A, Hadjiarapoglou LP. Tetrahedron Lett. 1998; 39: 9073
- 13d Müller P, Allenbach YF, Ferri M, Bernardinelli G. ARKIVOC 2003; (vii): 80
- 13e Karade NN, Shirodkar SG, Patil MN, Potrekar RA, Karade HN. Tetrahedron Lett. 2003; 44: 6729
- 13f Wang Q.-F, Hou H, Hui L, Yan C.-G. J. Org. Chem. 2009; 74: 7403
- 13g Xia L, Lee YR, Kim SH, Lyoo WS. Bull. Korean Chem. Soc. 2011; 32: 1554
- 13h Chawla R, Singh AK, Yadav LD. S. Tetrahedron Lett. 2012; 53: 3382
- 13i Kalpogiannaki D, Martini C.-I, Nikopoulou A, Nyxas JA, Pantazi V, Hadjiarapoglou LP. Tetrahedron 2013; 69: 1566
- 13j Xia L, Lee YR. Adv. Synth. Catal. 2013; 355: 2361
- 13k Wang S, He L.-Y, Guo L.-N. Synthesis 2015; 47: 3191
- 14 Hadjiarapoglou and co-workers reported that the reaction of spirocyclopropane 4a under the conditions of photochemical activation (CH3CN solution, irradiation for 1 h) proceeds completely to give dihydrofuran 7a (the product yield of 7a was not described), see: Bosnidou A.-E, Kalpogiannaki D, Karanestora S, Nixas JA, Hadjiarapoglou LP. J. Org. Chem. 2015; 80: 1279
- 15a Yadav VK, Balamurugan R. Org. Lett. 2001; 3: 2717
- 15b Bowman RK, Johnson JS. Org. Lett. 2006; 8: 573
- 15c Wei Y, Lin S, Zhang J, Niu Z, Fu Q, Liang F. Chem. Commun. 2011; 47: 12394
- 15d Huang P, Zhang N, Zhang R, Dong D. Org. Lett. 2012; 14: 370
- 16a Xing S, Pan W, Liu C, Ren J, Wang Z. Angew. Chem. Int. Ed. 2010; 49: 3215
- 16b Chagarovskiy AO, Ivanova OA, Rakhmankulov ER, Budynina EM, Trushkov IV, Melnikov MY. Adv. Synth. Catal. 2010; 352: 3179
- 16c Zhu W, Fang J, Liu Y, Ren J, Wang Z. Angew. Chem. Int. Ed. 2013; 52: 2032
- 16d Mackay WD, Fistikci M, Carris RM, Johnson JS. Org. Lett. 2014; 16: 1626
- 16e Xia Y, Liu X, Zheng H, Lin L, Feng X. Angew. Chem. Int. Ed. 2015; 54: 227
- 16f Zhang J, Xing S, Ren J, Jiang S, Wang Z. Org. Lett. 2015; 17: 218
- 16g Ma W, Fang J, Ren J, Wang Z. Org. Lett. 2015; 17: 4180
- 16h Wang Z, Chen S, Ren J, Wang Z. Org. Lett. 2015; 17: 4184
- 16i Xia Y, Lin L, Chang F, Fu X, Liu X, Feng X. Angew. Chem. Int. Ed. 2015; 54: 13748
- 17a Alper PB, Meyers C, Lerchner A, Siegel DR, Carreira EM. Angew. Chem. Int. Ed. 1999; 38: 3186
- 17b Ganton MD, Kerr MA. J. Org. Chem. 2004; 69: 8554
- 17c Parsons AT, Johnson JS. J. Am. Chem. Soc. 2009; 131: 3122
- 17d Parsons AT, Smith AG, Neel AJ, Johnson JS. J. Am. Chem. Soc. 2010; 132: 9688
- 17e Wales SM, Walker MM, Johnson JS. Org. Lett. 2013; 15: 2558
- 17f Ghosh A, Pandey AK, Banerjee P. J. Org. Chem. 2015; 80: 7235
- 18 The reaction of cyclopropanes derived from 1,3-cyclopentanedione and 1,3-diphenyl-1,3-propanedione afforded the corresponding dihydrofurans in 23 and 17% yield, respectively.
- 19 We exclude an alternative mechanism through SN2-like displacement by nucleophile, because the reaction occurred with a poor nucleophile (TsOH) under acidic conditions.
- 20 Stahl and co-workers reported a palladium-catalyzed aerobic dehydrogenation of substituted cyclohexanones to phenols, see: Izawa Y, Pun D, Stahl SS. Science 2011; 333: 209
- 21 Stahl and co-workers reported that the optimized palladium catalyst was Pd(TFA)2.20 The aerobic dehydrogenation of 7a in the presence of catalytic amounts of Pd(TFA)2, 2NMe2py ligand and TsOH with continuous bubbling of oxygen in DMSO at 80 °C for 24 h afforded 10a in 50% yield and recovered 7a in 32% yield.
- 22a Hayashi T, Thomson RH. Phytochemistry 1975; 14: 1085
- 22b Wada H, Kido T, Tanaka N, Murakami T, Saiki Y, Chen C.-M. Chem. Pharm. Bull. 1992; 40: 2099
- 22c Pieters L, De Bruyne T, Claeys M, Vlietinck A. J. Nat. Prod. 1993; 56: 899
- 22d Chauret DC, Bernard CB, Arnason JT, Durst T, Krishnamurty HG, Sanchez-Vindas P, Moreno N, San Roman L, Poveda L. J. Nat. Prod. 1996; 59: 152
- 22e Benevides PJ. C, Sartorelli P, Kato MJ. Phytochemistry 1999; 52: 339
- 22f Pieters L, Van Dyck S, Gao M, Bai R, Hamel E, Vlietinck A, Lemière G. J. Med. Chem. 1999; 42: 5475
- 22g Huang K.-S, Wang Y.-H, Li R.-L, Lin M. J. Nat. Prod. 2000; 63: 86
- 22h Shikishima Y, Takahashi Y, Honda G, Ito M, Takeda Y, Kodzhimatov OK, Ashurmetov O. Phytochemistry 2001; 56: 377
- 22i von Reuß SH, König WA. Phytochemistry 2004; 65: 3113
- 22j Shang S, Long S. Chem. Nat. Compd. 2008; 44: 186
- 23a Natori Y, Tsutsui H, Sato N, Nakamura S, Nambu H, Shiro M, Hashimoto S. J. Org. Chem. 2009; 74: 4418
- 23b Ito M, Namie R, Krishnamurthi J, Miyamae H, Takeda K, Nambu H, Hashimoto S. Synlett 2014; 25: 288
- 23c Natori Y, Ito M, Anada M, Nambu H, Hashimoto S. Tetrahedron Lett. 2015; 56: 4324
- 24 Hoshino J, Park E.-J, Kondratyuk TP, Marler L, Pezzuto JM, van Breemen RB, Mo S, Li Y, Cushman M. J. Med. Chem. 2010; 53: 5033
- 25a Choudhury ML. H. Synlett 2006; 1619
- 25b Choudhury LH, Parvin T, Khan AT. Tetrahedron 2009; 65: 9513
- 26a Chow YL, Bakker BH, Iwai K. J. Chem. Soc., Chem. Commun. 1980; 521
- 26b Chow YL, Bakker BH. Synthesis 1982; 648
- 26c Jacoby D, Celerier JP, Haviari G, Petit H, Lhommet G. Synthesis 1992; 884
- 26d Gopinath P, Chandrasekaran S. J. Org. Chem. 2011; 76: 700
- 26e Matlock JV, Fritz SP, Harrison SA, Coe DM, McGarrigle EM, Aggarwal VK. J. Org. Chem. 2014; 79: 10226
For selected recent examples of the syntheses of 2-arylbenzofurans using transition-metal-catalyzed reactions, see:
For recent examples of the syntheses of 2-arylbenzofurans using metal-free processes, see:
For reviews, see:
For recent reviews, see:
For examples of the syntheses of 2-aryl-3,5,6,7-tetrahydro-1-benzofuran-4(2H)-ones, see:
For the construction of a dihydrofuran ring system employing ring-opening cyclization of acylcyclopropanes, see:
For selected examples of Lewis acid catalyzed ring-opening reaction of donor-acceptor cyclopropanes, see:
One of the authors has reported the total syntheses of 2-aryl-2,3-dihydrobenzofuran natural products:
For reviews, see: