Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(11): 1743-1747
DOI: 10.1055/s-0035-1561946
DOI: 10.1055/s-0035-1561946
letter
Copper(I)-Promoted C–N Cross-Coupling of N-Heterocyclic Compounds with 1,2-Di(pyrimidin-2-yl) Disulfides
Further Information
Publication History
Received: 25 January 2016
Accepted after revision: 06 March 2016
Publication Date:
01 April 2016 (online)
Abstract
A CuTC-promoted C–N cross-coupling of 1,2-di(pyrimidin-2-yl) disulfides with N-heterocyclic compounds including indoles, triazole benzotriazole, and benzoimidazole by C–S cleavage of the disulfides is reported.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561946.
- Supporting Information
-
References and Notes
- 1a McCormick TM, Liu Q, Wang S. Org. Lett. 2007; 9: 4087
- 1b Swapna K, Vijay Kumar A, Prakash Reddy V, Rama Rao K. J. Org. Chem. 2009; 74: 7514
- 1c Li H.-X, Zhao W, Li H.-Y, Xu Z.-L, Wang W.-X, Lang J.-P. Chem. Commun. 2013; 49: 4259
- 2a Singh K, Singh K, Wan B, Franzblau S, Chibale K, Balzarini J. Eur. J. Med. Chem. 2011; 46: 2290
- 2b Singh K, Kaur H, Chibale K, Balzarini J, Little S, Bharatam PV. Eur. J. Med. Chem. 2012; 52: 82
- 2c Liu Z.-Q, Zhuo S.-T, Tan J.-H, Ou T.-M, Li D, Gu L.-Q, Huang Z.-S. Tetrahedron 2013; 69: 4922
- 3a Watanabe M, Koike H, Ishiba T, Okada T, Seo S, Hirai K. Bioorg. Med. Chem. 1997; 5: 437
- 3b Wolfe JP, Buchwald SL. Angew. Chem. Int. Ed. 1999; 38: 2413
- 3c Schlummer B, Scholz U. Adv. Synth. Catal. 2004; 346: 1599
- 3d Surry S, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
- 3e Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
- 3f Kumar V, Kaur K, Gupta GK, Sharma AK. Eur. J. Med. Chem. 2013; 69: 735
- 3g Ackermann L. Org. Process Res. Dev. 2015; 19: 260
- 4a Zhu L, Guo P, Li G, Lan J, Xie R, You J. J. Org. Chem. 2007; 72: 8535
- 4b Jiao J, Zhang XR, Chang NH, Wang J, Wei JF, Shi XY, Chen ZG. J. Org. Chem. 2011; 76: 1180
- 5a Newhouse T, Lewis CA, Eastman KJ, Baran PS. J. Am. Chem. Soc. 2010; 132: 7119
- 5b Roche M, Frison G, Brion J.-D, Provot O, Hamze A, Alami M. J. Org. Chem. 2013; 78: 8485
- 6a Aihara Y, Tobisu M, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2014; 136: 15509
- 6b Jin L.-K, Wan L, Feng J, Cai C. Org. Lett. 2015; 17: 4726
- 7a Cho GY, Rémy P, Jansson J, Moessner C, Bolm C. Org. Lett. 2004; 6: 3293
- 7b Reddy VP, Kumar AV, Swapna K, Rao KR. Org. Lett. 2009; 11: 951
- 7c Sun X, Tu X, Dai C, Zhang X, Zhang B, Zeng Q. J. Org. Chem. 2012; 77: 4454
- 7d Yin J, Buchwald SL. Org. Lett. 2000; 2: 1101
- 7e Xu Z.-L, Li H.-X, Ren Z.-G, Du W.-Y, Xu W.-C, Lang J.-P. Tetrahedron 2011; 67: 5282
- 8a Huang X, Anderson KW, Zim D, Jiang L, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 6653
- 8b Limmert ME, Roy AH, Hartwig JF. J. Org. Chem. 2005; 70: 9364
- 8c Fors BP, Watson DA, Biscoe MR, Buchwald SL. J. Am. Chem. Soc. 2008; 130: 13552
- 8d Vo GD, Hartwig JF. J. Am. Chem. Soc. 2009; 131: 11049
- 9a de La Mare PD. B. Electrophilic Halogenation. Cambridge University Press; New York: 1976
- 9b Hodgson HH. Chem. Rev. 1947; 40: 251
- 10 Fu G, Netherton M. Angew. Chem. Int. Ed. 2002; 41: 3910
- 11a Chowdhury S, Roya S. Tetrahedron Lett. 1997; 38: 2149
- 11b Kondo T, Uenoyama S.-y, Fujita K.-i, Mitsudo T.-a. J. Am. Chem. Soc. 1999; 121: 482
- 11c Arisawa M, Yamaguchi M. Org. Lett. 2001; 3: 763
- 11d Savarin C, Srogl J, Liebeskind LS. Org. Lett. 2002; 4: 4309
- 11e Nichol GS, Bally T, Glass RS. J. Org. Chem. 2010; 75: 8363
- 11f Ge W, Wei Y. Green Chem. 2012; 14: 2066
- 11g Mukherjee N, Chatterjee T, Ranu BC. J. Org. Chem. 2013; 78: 11110
- 11h Shen C, Zhang P, Sun Q, Bai S, Hor AT. S, Liu X. Chem. Soc. Rev. 2015; 44: 291
- 12a Prasad CD, Kumar S, Sattar M, Adhikary A, Kumar S. Org. Biomol. Chem. 2013; 11: 8036
- 12b Fang X.-L, Tang R.-Y, Zhang X.-G, Li J.-H. Synthesis 2011; 1099
- 12c Gogoi P, Gogoi SR, Kalita M, Barman P. Synlett 2013; 44: 873
- 12d Sang P, Chen Z, Zou J, Zhang Y. Green Chem. 2013; 15: 2096
- 12e Ravi C, Mohan DC, Adimurthy S. Org. Lett. 2014; 16: 2978
- 12f Hiebel M.-A, Berteina-Raboin S. Green Chem. 2015; 17: 937
- 12g Vásquez-Céspedes S, Ferry A, Candish L, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 5772
- 12h Jiao J, Wei L, Ji X.-M, Hu M.-L, Tang R.-Y. Adv. Synth. Catal. 2016; 358: 268
- 13a Quan Z.-J, Lv Y, Jing F.-Q, Jia X.-D, Huo C.-D, Wang X.-C. Adv. Synth. Catal. 2014; 356: 325
- 13b Du B.-X, Quan Z.-J, Da Y.-X, Zhang Z, Wang X.-C. Adv. Synth. Catal. 2015; 357: 1270
- 14 The structure of 3a was determined by X-ray crystallographie. CCDC 1435800 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 15 General Procedure for the Synthesis of 3a Under an atmosphere of nitrogen, disulfide1 1a (1 mmol, 0.546 g), indole 2a (3 mmol, 0.351 g), CuTC (1.0 mmol, 0.191 g), and Cs2CO3 (3.0 mmol, 0.978 g) were added to an oven-dried Schlenk tube. The tube was stoppered and degassed with nitrogen three times. Water-free dioxane (3 mL) was added by syringe, the mixture was stirred for 12 h at 120 °C, and the reaction was monitored by TLC analysis. Then, diluted HCl (2 mL) was added to the mixture to quench the reaction, and the mixture was extracted with EtOAc (3 × 100 mL). The combined organic layers were washed with aq NaHCO3 and brine, dried over MgSO4, filtered, and the volatiles were removed in vacuo. The residue was purified by column chromatography on silica gel (EtOAc–PE = 1:30) to give the corresponding products. Ethyl 2-(1H-Indol-1-yl)-4-methyl-6-phenylpyrimidine-5-carboxylate (3a) Yield 80%, colorless crystals, mp 135–137 °C. 1H NMR (600 MHz, CDCl3): δ = 8.88 (d, J = 8.4 Hz, 1 H, ArH), 8.37 (d, J = 3.6 Hz, 1 H, ArH), 7.77–7.75 (m, 2 H, ArH), 7.62 (d, J = 7.8 Hz, 1 H, CH), 7.53–7.50 (m, 3 H, ArH), 7.34 (t, J = 7.8 Hz, 1 H, ArH), 7.25 (t, J = 7.2 Hz, 1 H, ArH), 6.71 (d, J = 3.6 Hz, 1 H, CH), 4.20 (q, J = 7.2 Hz, 2 H, OCH2), 2.70 (s, 3 H, CH3), 1.07 (t, J = 7.2 Hz, 3 H, CH2CH3). 13C NMR (150 MHz, CDCl3): δ = 168.12, 167.31, 165.39, 156.44, 138.06, 135.48, 131.49, 130.13, 128.52 (2 C), 128.36 (2 C), 126.04, 123.74, 122.31, 120.81, 120.57, 116.62, 107.24, 61.69, 22.97, 13.64. HRMS (ESI+): m/z calcd for C22H20N3O2: 358.1550 [M + H]+; found: 358.1553.
- 16 For the reaction of 1,2-di(pyrimidin-2-yl) disulfides with indole achieved the C–S coupling product, see Scheme 5.
- 17 General Procedure for the Synthesis of 4a Under an atmosphere of nitrogen, disulfide13a (1 mmol, 0.546 g), 2-methylindole (2b, 3 mmol, 0.393 g), CuTC (1.0 mmol, 0.191 g), Ni(dppp)Cl2 (0.1 mol, 0.054 g), and Cs2CO3 (3.0 mmol, 0.978 g) were added to an oven-dried Schlenk tube. The tube was stoppered and degassed with nitrogen three times. Water-free dioxane (3 mL) was added by syringe, the mixture was stirred for 12 h at 120 °C, and the reaction was monitored by TLC analysis. Then, diluted HCl (2 mL) was added to the mixture to quench the reaction, and the mixture was extracted with EtOAc (3 × 100 mL). The combined organic layers were washed with aq NaHCO3 and brine, dried over MgSO4, filtered, and the volatiles were removed in vacuo. The residue was purified by column chromatography on silica gel (EtOAc–PE = 1:30) to give the corresponding products. Ethyl 4-Methyl-2-(2-methyl-1H-indol-1-yl)-6-phenylpyrimidine-5-carboxylate (4a) Yield 79%, yellow oil. 1H NMR (600 MHz, CDCl3): δ = 8.30 (d, J = 8.4 Hz, 1 H, ArH), 7.68–7.66 (m, 2 H, ArH), 7.55–7.54 (m, 3 H, ArH), 7.48 (d, J = 7.8 Hz, 1 H, ArH), 7.16–7.13 (m, 2 H, ArH), 6.51 (s, 1 H, CH), 4.19 (q, J = 7.2 Hz, 2 H, OCH2), 2.70 (s, 3 H, CH3), 2.62 (s, 3 H, CH3), 1.03 (t, J = 7.2 Hz, 3 H, CH2CH3). 13C NMR (150 MHz, CDCl3): δ = 168.12, 167.31, 165.39, 156.44, 138.06, 135.48, 131.49, 130.13, 128.52 (2 C), 128.36 (2 C), 126.04, 123.74, 122.31, 120.82, 120.57, 116.62, 107.24, 61.69, 22.97, 13.64, 13.63. HRMS (ESI+): m/z calcd for C23H22N3O2: 372.1707 [M + H]+; found: 372.1710.
Some examples on the C–H thiolation using disulfides: