Synthesis 2016; 48(17): 2829-2836
DOI: 10.1055/s-0035-1562442
special topic
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed Reductive Cross-Coupling of Benzyl Halides with Aryl Halides

Qingchen Zhang
a   Center for Supramolecular Materials and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, P. R. of China
,
Xuan Wang
a   Center for Supramolecular Materials and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, P. R. of China
,
Qun Qian*
a   Center for Supramolecular Materials and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, P. R. of China
,
Hegui Gong*
a   Center for Supramolecular Materials and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, P. R. of China
b   Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China   Email: hegui_gong@shu.edu.cn   Email: Qianqun@shu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 26 April 2016

Accepted after revision: 06 June 2016

Publication Date:
07 July 2016 (online)


Abstract

Systematic studies of the coupling of benzylic with aryl halides are presented. The optimized reaction conditions for electron-deficient­ aryl halides cannot be applied to the electron-rich or neutral counterparts, and vice versa. The excellent functional group tolerance and broad substrate scope may enable the current work to be useful for the construction of diaryl methane products.

Supporting Information

 
  • References


    • For reviews, see:
    • 1a Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
    • 1b Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
    • 1c Knappke CE. I, Grupe S, Gartner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
    • 1d Weix DJ. Acc. Chem. Res. 2015; 48: 1767
    • 1e Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242
    • 1f Nédélec JY, Perichon J, Troupel M. Top. Curr. Chem. 1997; 185: 141

      For catalytic C(sp3)−C(sp3) bond formation through cross-coupling of alkyl electrophiles, see:
    • 2a Yu X, Yang T, Wang S, Xu H, Gong H. Org. Lett. 2011; 13: 2138
    • 2b Xu H, Zhao C, Qian Q, Deng W, Gong H. Chem. Sci. 2013; 4: 4022
    • 2c Liang Z, Xue W, Lin K, Gong H. Org. Lett. 2014; 16: 4684
    • 2d Xue W, Xu H, Liang Z, Qian Q, Gong H. Org. Lett. 2014; 16: 4984

      For selected examples of allylation of alkyl halides, see:
    • 3a Dai Y, Wu F, Zang Z, You H, Gong H. Chem. Eur. J. 2012; 18: 808
    • 3b Anka-Lufford LL, Prinsell MR, Weix DJ. J. Org. Chem. 2012; 77: 9989
    • 3c Qian X, Auffrant A, Felouat A, Gosmini C. Angew. Chem. Int. Ed. 2011; 50: 10402

      For dimerization of two alkyl electrophiles, see:
    • 4a Peng Y, Luo L, Yan C.-S, Zhang J.-J, Wang Y.-W. J. Org. Chem. 2013; 78: 10960
    • 4b Prinsell MR, Everson DA, Weix DJ. Chem. Commun. 2010; 5743
    • 4c Goldup SM, Leigh DA, McBurney RT, McGonigal PR, Plant A. Chem. Sci. 2010; 1: 383

      For selected examples for alkyl–aryl bond formation, see:
    • 5a Everson DA, Shrestha R, Weix DJ. J. Am. Chem. Soc. 2010; 132: 920
    • 5b Everson DA, Jones BA, Weix DJ. J. Am. Chem. Soc. 2012; 134: 6146
    • 5c Yan C.-S, Peng Y, Xu X.-B, Wang Y.-W. Chem. Eur. J. 2012; 18: 6039
    • 5d Molander GA, Traister KM, O’Neill BT. J. Org. Chem. 2015; 80: 2907
    • 5e Wang S, Qian Q, Gong H. Org. Lett. 2012; 14: 3352

      For selected examples for alkyl-acyl bond formation, see:
    • 6a Wu F, Lu W, Qian Q, Ren Q, Gong H. Org. Lett. 2012; 14: 3044
    • 6b Yin H, Zhao C, You H, Lin Q, Gong H. Chem. Commun. 2012; 48: 7034
    • 6c Zhao C, Jia X, Wang X, Gong H. J. Am. Chem. Soc. 2014; 136: 17645
    • 6d Wotal AC, Weix DJ. Org. Lett. 2012; 14: 1476
    • 6e Jia X, Zhang X, Qian Q, Gong H. Chem. Commun. 2015; 51: 10302

      For coupling involving generation of organometallic reagents in situ, see:
    • 7a Krasovskiy A, Duplais C, Lipshutz BH. J. Am. Chem. Soc. 2009; 131: 15592
    • 7b Czaplik WM, Mayer M, von Wangelin AJ. Angew. Chem. Int. Ed. 2009; 48: 607
    • 7c Liu J.-H, Yang C.-T, Lu X.-Y, Zhang Z.-Q, Xu L, Cui M, Lu X, Xiao B, Fu Y, Liu L. Chem. Eur. J. 2014; 20: 15334
    • 8a Cherney AH, Reisman SE. J. Am. Chem. Soc. 2014; 136: 14365
    • 8b Cherney AH, Kadunce NT, Reisman SE. J. Am. Chem. Soc. 2013; 135: 7442
    • 8c Kadunce NT, Reisman SE. J. Am. Chem. Soc. 2015; 137: 10480
    • 9a Moragas T, Gaydou M, Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
    • 9b Leon T, Correa A, Martin R. J. Am. Chem. Soc. 2013; 135: 1221
    • 10a Acker LK. G, Anka-Lufford LL, Naodovic M, Weix DJ. Chem. Sci. 2015; 6: 1115
    • 10b Durandetti M, Gosmini C, Perichon J. Tetrahedron 2007; 63: 1146
    • 11a Tellis JC, Primer DN, Monlander GA. Science 2014; 345: 433
    • 11b Ryu D, Primer DN, Tellis JC, Molander GA. Chem. Eur. J. 2016; 22: 120
    • 11c Gutierrez O, Tellis JC, Primer DN, Monlander GA, Kozlowski MC. J. Am. Chem. Soc. 2015; 137: 4896
  • 12 Arendt KM, Doyle AG. Angew. Chem. Int. Ed. 2015; 54: 9876
  • 13 Iwai Y, Gligorich KM, Sigman MS. Angew. Chem. Int. Ed. 2008; 47: 3219
  • 14 Liu Z, Dong N, Xu M, Sun Z, Tu T. J. Org. Chem. 2013; 78: 7436
  • 15 Saini V, Liao L, Wang Q, Jana R, Sigman M. Org. Lett. 2013; 15: 5008
  • 16 Wang X, Guram A, Caille S, Hu J, Preston J, Ronk M, Walker S. Org. Lett. 2011; 13: 1881
  • 17 Schäfer G, Bode J. Angew. Chem. Int. Ed. 2011; 50: 10913
  • 18 Bedford RB, Brenner PB, Carter E, Clifton J, Cogswell PM, Gower NJ, Haddow MF, Harvey JN, Kehl JA, Murphy DM, Neeve EC, Neidig ML, Nunn J, Snyder BE. R, Taylor J. Organometallics 2014; 33: 5767
  • 19 Mo X, Yakiwchuk J, Dansereau J, McCubbin A, Hall D. J. Am. Chem. Soc. 2015; 137: 9694
  • 20 Pernia G, Kilburn J, Essex J, Mortishire-Smith R, Rowley M. J. Am. Chem. Soc. 1996; 118: 10220
  • 21 Maity P, Shacklady-MeAtee D, Yap G, Sirianni E, Watson M. J. Am. Chem. Soc. 2013; 135: 280