Synthesis 2016; 48(22): 4009-4015
DOI: 10.1055/s-0035-1562492
paper
© Georg Thieme Verlag Stuttgart · New York

Zwitterionic-Type Molten Salt Catalyzed Iodination in Water: Synthesis of Iodoimidazoheterocycles

Susmita Mondal
Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India   Email: alakananda.hajra@visva-bharati.ac.in
,
Sadhanendu Samanta
Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India   Email: alakananda.hajra@visva-bharati.ac.in
,
Mukta Singsardar
Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India   Email: alakananda.hajra@visva-bharati.ac.in
,
Subhajit Mishra
Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India   Email: alakananda.hajra@visva-bharati.ac.in
,
Shubhanjan Mitra
Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India   Email: alakananda.hajra@visva-bharati.ac.in
,
Alakananda Hajra*
Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India   Email: alakananda.hajra@visva-bharati.ac.in
› Author Affiliations
Further Information

Publication History

Received: 15 April 2016

Accepted after revision: 19 May 2016

Publication Date:
28 June 2016 (online)


Abstract

An environmentally benign protocol for the iodination of imidazoheterocycles has been developed through sp2 C–H bond functionalization with molecular iodine in water at room temperature. The reaction is catalyzed by an imidazole-based zwitterion-type molten salt. A library of iodo-substituted imidazo[1,2-a]pyridines with broad functionality have been synthesized. This methodology is also applicable to imidazo[2,1-b]thiazole and imidazole scaffolds.

Supporting Information

 
  • References


    • The significance of organocatalysis is outlined in special issues of:
    • 1a Adv. Synth. Catal. 2004; 346: 1007
    • 1b Chem. Rev. 2007; 107: 5413
  • 2 Das S, Santra S, Mondal P, Majee A, Hajra A. Synthesis 2016; 48: 1269
    • 3a Grieco PA. Organic Synthesis in Water . Blackie Academic & Professional; London: 1998
    • 3b Li C.-J, Chan TH. Comprehensive Organic Reactions in Aqueous Media. John Wiley & Sons; Hoboken: 2007
    • 3c Li C.-J. Chem. Rev. 2005; 105: 3095
    • 3d Lindstrom UM. Chem. Rev. 2002; 102: 2751
    • 3e Pirrung MC. Chem. Eur. J. 2006; 12: 1312
    • 3f Manna A, Kumar A. J. Phys. Chem. A 2013; 117: 2446
    • 3g Butler RN, Coyne AG. Chem. Rev. 2010; 110: 6302
  • 4 Gueiffier CE, Gueiffier A. Mini-Rev. Med. Chem. 2007; 7: 888
    • 5a Stasyuk AJ, Banasiewicz M, Cyrański MK, Gryko DT. J. Org. Chem. 2012; 77: 5552
    • 5b Shao N, Pang G.-X, Yan C.-X, Shi G.-F, Cheng Y. J. Org. Chem. 2011; 76: 7458
    • 7a Koubachi J, El Kazzouli S, Bousmina M, Guillaumet G. Eur. J. Org. Chem. 2014; 5119
    • 7b Ravi C, Mohan DC, Adimurthy S. Org. Lett. 2014; 16: 2978
    • 7c Wang C, Lei S, Cao H, Qiu S, Liu J, Deng H, Yan C. J. Org. Chem. 2015; 80: 12725
    • 7d Cao H, Chen L, Liu J, Cai H, Deng H, Chen G, Yan C, Chen Y. RSC Adv. 2015; 5: 22356
    • 7e Sai L, Chen G, Mai Y, Chen L, Cai H, Tan J, Cao H. Adv. Synth. Catal. 2016; 358: 67
    • 7f Lei S, Cao H, Chen L, Liu J, Cai H, Tan J. Adv. Synth. Catal. 2015; 357: 3109
    • 7g Cao H, Liu X, Zhao L, Cen J, Lin J, Zhu Q, Fu M. Org. Lett. 2014; 16: 146
    • 7h Cao H, Lei S, Li N, Chen L, Liu J, Cai H, Qiu S, Tan J. Chem. Commun. 2015; 51: 1823
    • 8a Monir K, Bagdi AK, Ghosh M, Hajra A. Org. Lett. 2014; 16: 4630
    • 8b Bagdi AK, Rahman M, Santra S, Majee A, Hajra A. Adv. Synth. Catal. 2013; 355: 1741
    • 8c Santra S, Bagdi AK, Majee A, Hajra A. Adv. Synth. Catal. 2013; 355: 1065
    • 9a Mishra S, Mondal P, Ghosh M, Mondal S, Hajra A. Org. Biomol. Chem. 2016; 14: 1432
    • 9b Monir K, Ghosh M, Jana S, Mondal P, Majee A, Hajra A. Org. Biomol. Chem. 2015; 13: 8717
    • 9c Mitra S, Ghosh M, Mishra S, Hajra A. J. Org. Chem. 2015; 80: 8275
    • 9d Monir K, Bagdi AK, Ghosh M, Hajra A. J. Org. Chem. 2015; 80: 1332
    • 9e Bagdi AK, Mitra S, Ghosh M, Hajra A. Org. Biomol. Chem. 2015; 13: 3314
    • 9f Jana S, Chakraborty A, Mondal S, Hajra A. RSC Adv. 2015; 5: 77534
    • 10a Knochel P, Dohle W, Gommermann N, Kneisel FF, Kopp F, Korn T, Sapountzis I, Vu VA. Angew. Chem. Int. Ed. 2003; 42: 4302
    • 10b Tilly D, Chevallier F, Mongin F, Gros PC. Chem. Rev. 2014; 114: 1207
    • 10c Crampton MR. Organic Reaction Mechanisms . Wiley; New York: 2003: 275
    • 10d Khatun N, Guin S, Rout SK, Patel BK. RSC Adv. 2014; 4: 10770
    • 11a Goldfinger MB, Crawford KB, Swager TM. J. Am. Chem. Soc. 1997; 119: 4578
    • 11b Wolter M, Klapars A, Buchwald SL. Org. Lett. 2001; 3: 3803
    • 11c Sheppard TD. Org. Biomol. Chem. 2009; 7: 1043
    • 11d Hartwig JF. Organotransition Metal Chemistry . University Science Books; Sausalito: 2010
    • 12a Pimlott SL, Sutherland A. Chem. Soc. Rev. 2011; 40: 149
    • 12b Goldsby RE, Fitzgerald PA. Nucl. Med. Biol. 2008; 35: S49
    • 12c Seevers RH, Counsell RE. Chem. Rev. 1982; 82: 575
    • 12d Ceusters M, Tourwe D, Callaerts J, Mertens J, Peter A. J. Org. Chem. 1995; 60: 8324
    • 12e DeNardo GL, DeNardo SJ, O’Donnell RT, Kroger LA, Kukis DL, Meares CF, Goldstein DS, Shen S. Clin. Lymphoma 2000; 1: 118
    • 13a Dutta U, Deb A, Lupton DW, Maiti D. Chem. Commun. 2015; 51: 17744
    • 13b Sharma KK, Patel DI, Jain R. Chem. Commun. 2015; 51: 15129
    • 13c Sun K, Lv Y, Wang J, Sun J, Liu L, Jia M, Liu X, Li Z, Wang X. Org. Lett. 2015; 17: 4408
    • 13d Nouzarian M, Hosseinzadeh R, Golchoubian H. Synth. Commun. 2013; 43: 2913
    • 13e Bahnous M, Bouraiou A, Chelghoum M, Bouacida S, Roisnel T, Smati F, Bentchouala C, Gros PC, Belfaitah A. Bioorg. Med. Chem. Lett. 2013; 23: 1274
    • 13f Ferreira IM, Casagrande GA, Pizzuti L, Raminelli C. Synth. Commun. 2014; 44: 2094
    • 14a Takizawa S, Nishida J, Tsuzuki T, Tokito S, Yamashita Y. Inorg. Chem. 2007; 46: 4308
    • 14b Zhang C.-P, Wang Z.-L, Chen Q.-Y, Zhang C.-T, Gu Y.-C, Xiao J.-C. Angew. Chem. Int. Ed. 2011; 50: 1896
    • 14c El Kazzouli S, Berteina-Raboin S, Mouaddib A, Guillaumet G. Lett. Org. Chem. 2012; 9: 118
    • 14d Marhadour S, Bazin M.-A, Marchand P. Tetrahedron Lett. 2012; 53: 297
    • 14e Meng X, Yu C, Chen G, Zhao P. Catal. Sci. Technol. 2015; 5: 372
    • 15a Kumar A, Srivastava S, Gupta G, Kumara P, Sarkar J. RSC Adv. 2013; 3: 3548
    • 15b Aggarwal A, Lancaster NL, Sethi AR, Welton T. Green Chem. 2002; 4: 517
    • 15c Cammarata L, Kazarian SG, Salter PA, Welton T. Phys. Chem. Chem. Phys. 2001; 3: 5192
    • 15d Sarkar A, Roy SR, Chakraborti AK. Chem. Commun. 2011; 47: 4538
    • 15e Chakraborti AK, Roy SR, Kumar D, Chopra P. Green Chem. 2008; 10: 1111
    • 15f Chakraborti AK, Roy SR. J. Am. Chem. Soc. 2009; 131: 6902
    • 15g Zhang L, Fu X, Gao G. ChemCatChem 2011; 3: 1359
    • 15h Gholap AR, Venkatesan K, Daniel T, Lahoti RJ, Srinivasan KV. Green Chem. 2003; 5: 693
    • 15i Tsuzuki S, Tokuda H, Mikami M. Phys. Chem. Chem. Phys. 2007; 9: 4780
    • 16a Kundu D, Debnath RK, Majee A, Hajra A. Tetrahedron Lett. 2009; 50: 6998
    • 16b Kundu D, Majee A, Hajra A. Catal. Commun. 2010; 11: 1157
    • 16c Kundu D, Bagdi AK, Majee A, Hajra A. Synlett 2011; 1165
    • 16d Rahman M, Roy A, Ghosh M, Mitra S, Majee A, Hajra A. RSC Adv. 2014; 4: 6116