Subscribe to RSS
DOI: 10.1055/s-0035-1562551
Orthogonal sp3 C1–H and N–H Bond Functionalization of 1,2,3,4-Tetrahydroisoquinolines via the Ugi Four-Component Reaction
Publication History
Received: 20 March 2016
Accepted after revision: 16 May 2016
Publication Date:
14 July 2016 (online)
◊ Ji-Min Yan and Qi-Fan Bai contributed equally to this work.
Abstract
A new protocol for orthogonal sp3 C1–H and N–H bond functionalization of 1,2,3,4-tetrahydroisoquinolines has been established via the Ugi four-component reaction with aldehydes, isonitriles, and carboxylic acids. It was revealed that only the N–H bond could be functionalized when the reaction was performed in acetonitrile at room temperature; however, when the reaction was carried out in toluene at 80 °C, redox-neutral sp3 C1–H bond functionalization of 1,2,3,4-tetrahydroisoquinolines was achieved. Differing from the common role of carboxylic acid as a promoter in redox-neutral amine α-functionalization, the carboxylic acid employed herein is also a reactant. The orthogonal process is compatible with various substrates and provides an appealing access to a library of structurally diverse 1,2,3,4-tetrahydroisoquinolines.
Key words
sp3 C–H functionalization - Ugi reaction - redox-neutral reaction - 1,2,3,4-tetrahydroisoquinolines - iminium isomerizationSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1562551.
- Supporting Information
-
References
- 1a Davies HM. L, Morton D. J. Org. Chem. 2016; 81: 343
- 1b Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
- 1c Noisier AF. M, Brimble MA. Chem. Rev. 2014; 114: 8775
- 1d Achermann L. Acc. Chem. Res. 2014; 47: 281
- 1e Neufeldt S, Sanford M. Acc. Chem. Res. 2012; 45: 936
- 1f Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
- 1g Mkhalid I, Barnard J, Marder T, Murphy J, Hartwig J. Chem. Rev. 2010; 110: 890
- 2a Guo X.-X, Gu D.-W, Wu Z, Zhang W. Chem. Rev. 2015; 115: 1622
-
2b Gao K, Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
- 2c Arockiam P, Bruneau C, Dixneuf P. Chem. Rev. 2012; 112: 5879
-
2d Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
-
3 Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
-
4a Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
- 4b Xu B, Liu W, Kuang C. Eur. J. Org. Chem. 2014; 2576
-
4c Engle KM, Wasa T.-SM. M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
-
4d Colby D, Bergman R, Ellman J. Chem. Rev. 2010; 110: 624
- 5a Devari S, Shan BA. Chem. Commun. 2016; 52: 1490
- 5b Cheng J.-K, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 42
- 5c Wan M, Meng Z, Lou H, Liu L. Angew. Chem. Int. Ed. 2014; 53: 13845
-
5d Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 6a Beatty JW, Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474
- 6b Pereira R, Otth E, Cvengroš J. Eur. J. Org. Chem. 2015; 1674
- 6c Wagner A, Ofial AR. J. Org. Chem. 2015; 80: 2848
- 6d Nauth AM, Otto N, Opatz T. Adv. Synth. Catal. 2015; 357: 3424
- 6e Zhao D, Zhang J, Xie Z. Angew. Chem. Int. Ed. 2014; 53: 12902
- 7a Yan C, Liu Y, Wang Q. Org. Lett. 2015; 17: 5714
- 7b Tanoue A, Yoo W, Kobayashi S. Org. Lett. 2014; 16: 2346
- 7c Muramatsu W, Nakano K, Li C. Org. Lett. 2013; 15: 3650
- 7d Ratnikov M, Xu X, Doyle M. J. Am. Chem. Soc. 2013; 135: 9475
- 7e Dhineshkumar J, Lamani M, Alagiri K, Probhu K. Org. Lett. 2013; 15: 1092
- 7f Liu X, Sun B, Xie Z, Qing X, Liu L, Lou H. J. Org. Chem. 2013; 78: 3104
- 7g Jones K, Karier P, Klussmann M. ChemCatChem 2012; 4: 51
- 8a Chen Y, Feng G. Org. Biomol. Chem. 2015; 13: 4260
- 8b Zhong J, Meng Q, Liu B, Li X, Gao X, Lei T, Wu C, Li Z, Tung C, Wu L. Org. Lett. 2014; 16: 1988
- 8c Zhu S, Rueping M. Chem. Commun. 2012; 48: 11960
- 8d Freeman D, Furst L, Condie A, Stephenson C. Org. Lett. 2012; 14: 94
- 8e Zhao G, Yang C, Guo L, Sun H, Chen C, Xia W. Chem. Commun. 2012; 48: 2337
- 8f Rueping M, Zhu S, Koenigs RM. Chem. Commun. 2011; 47: 12709
- 9a Ngouansavanh T, Zhu J. Angew. Chem. Int. Ed. 2007; 46: 5775
- 9b Jiang G, Chen J, Huang J.-S, Che C.-M. Org. Lett. 2009; 11: 4568
- 10a Seidel D. Acc. Chem. Res. 2015; 48: 317
- 10b Hu G, Chen W, Ma D, Zhang Y, Xu P, Gao Y, Zhao Y. J. Org. Chem. 2016; 81: 1704
- 10c Cheng Y.-F, Rong H.-J, Yi C.-B, Yao J.-J, Qu J. Org. Lett. 2015; 17: 4758
- 10d Haldar S, Roy SK, Maity B, Koley D, Jana CK. Chem. Eur. J. 2015; 21: 15290
- 10e Mandal S, Mahato S, Jana CK. Org. Lett. 2015; 17: 3762
- 10f Rahman M, Bagdi AK, Mishra S, Hajra A. Chem. Commun. 2014; 50: 2951
- 10g Li J, Wang H, Sun J, Yang Y, Liu L. Org. Biomol. Chem. 2014; 12: 2523
- 10h Lin W, Cao T, Fan W, Han Y, Kuang J, Luo H, Miao B, Tang X, Yu Q, Yuan W, Zhang J, Zhu C, Ma S. Angew. Chem. Int. Ed. 2014; 53: 277
- 10i Lin W, Ma S. Org. Chem. Front. 2014; 1: 338
- 11a Chen W, Seidel D. Org. Lett. 2016; 18: 1024
- 11b Kang Y, Richers MT, Sawicki CH, Seidel D. Chem. Commun. 2015; 51: 10648
- 11c Kang Y, Chen W, Breugst M, Seidel D. J. Org. Chem. 2015; 80: 9628
- 11d Richers MT, Breugst M, Platonova AY, Ullrich A, Dieckmann A, Houk KN, Seidel D. J. Am. Chem. Soc. 2014; 136: 6123
- 12 Bienaymé H, Hulme C, Oddon G, Schmitt P. Chem. Eur. J. 2000; 6: 3321
- 13a Dai W, Shi J, Wu J. Synlett 2008; 2716
- 13b Feng G, Wu J, Dai W.-M. Tetrahedron Lett. 2007; 48: 401
- 13c Xing X, Wu J, Luo J, Dai W.-M. Synlett 2006; 2099
- 13d Xing X, Wu J, Feng G, Dai W.-M. Tetrahedron 2006; 62: 6774
- 14 Hulme C, Bienaymé H, Nixey T, Chenera B, Jones W, Tempest P, Smith AL. Methods Enzymol. 2003; 369: 469
- 15 Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 16a Hulme C. Applications of Multicomponent Reactions in Drug Discovery – Lead Generation to Process Development. In Multicomponent Reactions. Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005: 311-341
- 16b Touréand BB, Hall DG. Chem. Rev. 2009; 109: 4439
- 16c Rotstein BH, Zaretsky S, Rai V, Yudin AK. Chem. Rev. 2014; 114: 8323
- 16d Lamberth C, Jeanguenat A, Cederbaum F, De Mesmaeker A, Zeller M, Kempf H.-J, Zeun R. Bioorg. Med. Chem. 2008; 16: 1531
- 16e Gangloff N, Nahm D, Döring L, Kuckling D, Luxenhofer R. J. Polym. Sci., Part A: Polym. Chem. 2015; 53: 1680
- 16f Yang B, Zhao Y, Wei Y, Fu C, Tao L. Polym. Chem. 2015; 6: 8233
- 16g Cioc RC, Ruijter E, Orru RV. A. Green Chem. 2014; 16: 2958
- 17 Ayaz M, De Moliner F, Dietrich J, Hulme C. Applications of Isocyanides in IMCRs for the Rapid Generation of Molecular Diversity. In Isocyanide Chemistry: Applications in Synthesis and Material Science. Nenajdenko VG. Wiley-VCH; Weinheim: 2012: 335-384
- 18 Ugi I, Meyr R, Fetzer U, Steinbrückner C. Angew. Chem. 1959; 71: 386
- 19a Zhang Z, Xiao F, Huang B, Hu J, Fu B, Zhang Z. Org. Lett. 2016; 18: 908
- 19b Boyarskiy VP, Bokach NA, Luzyanin KV, Kukushkin VY. Chem. Rev. 2015; 115: 2698
- 19c Kaur T, Wadhwaa P, Sharma A. RSC Adv. 2015; 5: 52769
- 19d Bounar H, Liu Z, Zhang L, Guan X, Yang Z, Liao P, Bi X, Li X. Org. Biomol. Chem. 2015; 13: 8723
- 19e Yugandar S, Acharya A, Ila H. J. Org. Chem. 2013; 78: 3948
- 20a Mossetti R, Saggiorato D, Tron GC. J. Org. Chem. 2011; 76: 10258
- 20b Mossetti R, Pirali T, Saggiorato D, Tron GC. Chem. Commun. 2011; 47: 6966
- 20c Tron GC. Eur. J. Org. Chem. 2013; 1849
- 21 During preparation of this manuscript, a related work was reported; see: Zhu Z, Seidel D. Org. Lett. 2016; 18: 631
- 22 CCDC 1457963 (for 1l) and CCDC 1457962 (for 1o) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
For selected examples of C–H bond functionalization, see:
For selected reviews, see:
For selected examples of C–H bond functionalization using the directing group strategy, see:
For selected examples, see:
For selected examples of sp3 C–H bonds adjacent to nitrogen, see:
For selected examples of C–H bond functionalization of tetrahydroisoquinolines, see:
For selected examples of photoredox C–H bond functionalization of tetrahydroisoquinolines, see:
For selected examples, see:
For selected examples from Seidel’s laboratory, see:
For selected examples, see:
For selected examples of the reactions of isonitriles, see:
For Ugi-type reactions for imide synthesis, see: