Synthesis 2016; 48(24): 4423-4430
DOI: 10.1055/s-0035-1562615
paper
© Georg Thieme Verlag Stuttgart · New York

Decarbonylative Dibromination of 5-Phenylthiophene-2-carbaldehyde with Bromine

Vladimir Ajdačić
a   Faculty of Chemistry, University of Belgrade, PO Box 51, Studentski trg 16, 11158 Belgrade, Serbia
,
Stepan Stepanović
b   Institute of Chemistry Technology and Metallurgy, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia   Email: igorop@chem.bg.ac.rs
,
Mario Zlatović
a   Faculty of Chemistry, University of Belgrade, PO Box 51, Studentski trg 16, 11158 Belgrade, Serbia
,
Maja Gruden
a   Faculty of Chemistry, University of Belgrade, PO Box 51, Studentski trg 16, 11158 Belgrade, Serbia
,
Igor M. Opsenica*
a   Faculty of Chemistry, University of Belgrade, PO Box 51, Studentski trg 16, 11158 Belgrade, Serbia
› Author Affiliations
Further Information

Publication History

Received: 03 June 2016

Accepted after revision: 14 July 2016

Publication Date:
24 August 2016 (online)


Abstract

The decarbonylative dibromination of 2-thiophenecarboxaldehyde derivatives with bromine under mild conditions is developed. The mechanism for the decarbonylation is investigated by experimental and instrumental techniques and is extended by a computational study. Alongside removal of the formyl group, this method enables functionalization of the starting compounds in a single reaction step, which can be further exploited for the synthesis of 2,5-diaryl-3-bromothiophenes and 2,3,5-triarylthiophenes.

Supporting Information

 
  • References

  • 1 Ortiz de Montellano PR In Cytochrome P450: Structure, Mechanism, and Biochemistry . 4th ed.; Ortiz de Montellano PR. Springer International Publishing; Switzerland: 2015: 154
    • 2a Garralda MA. Dalton Trans. 2009; 3635
    • 2b Modak A, Maiti D. Org. Biomol. Chem. 2016; 14: 21
    • 3a Tsuji J, Ohno K. Tetrahedron Lett. 1965; 6: 3969
    • 3b Ohno K, Tsuji J. J. Am. Chem. Soc. 1968; 90: 99
    • 3c Tsuji J, Ohno K. Synthesis 1969; 157
    • 3d Walborsky HM, Allen LE. J. Am. Chem. Soc. 1971; 93: 5465
    • 3e Ziegler FE, Belema M. J. Org. Chem. 1997; 62: 1083
    • 3f Zeng C.-M, Han M, Covey DF. J. Org. Chem. 2000; 65: 2264
    • 3g Kato T, Hoshikawa M, Yaguchi Y, Izumi K, Uotsu Y, Sakai K. Tetrahedron 2002; 58: 9213
    • 3h Harmata M, Wacharasindhu S. Org. Lett. 2005; 7: 2563
    • 3i Malerich JP, Maimone TJ, Elliott GI, Trauner D. J. Am. Chem. Soc. 2005; 127: 6276
    • 3j Zhang H, Padwa A. Tetrahedron Lett. 2006; 47: 3905
    • 3k Padwa A, Zhang H. J. Org. Chem. 2007; 72: 2570
    • 4a Doughty DH, Pignolet LH. J. Am. Chem. Soc. 1978; 100: 7083
    • 4b Boeckman RK. Jr, Zhang J, Reeder MR. Org. Lett. 2002; 4: 3891
    • 4c Fristrup P, Kreis M, Palmelund A, Norrby PO, Madsen R. J. Am. Chem. Soc. 2008; 130: 5206
    • 4d Patra T, Manna S, Maiti D. Angew. Chem. Int. Ed. 2011; 50: 12140
    • 5a Hawthorne JO, Wilt MH. J. Org. Chem. 1960; 25: 2215
    • 5b Tsuji J, Ohno K, Kajimoto T. Tetrahedron Lett. 1965; 6: 4565
    • 5c Tsuji J, Ohno K. J. Am. Chem. Soc. 1968; 90: 94
    • 5d Wilt JW, Pawlikowski WW. J. Org. Chem. 1975; 40: 3641
    • 5e Matsubara S, Yokota Y, Oshima K. Org. Lett. 2004; 6: 2071
  • 6 Modak A, Deb A, Patra T, Rana S, Maity S, Maiti D. Chem. Commun. 2012; 48: 4253
    • 7a Shibata T, Toshida N, Yamasaki M, Maekawa S, Takagi K. Tetrahedron 2005; 61: 9974
    • 7b Kwong FY, Lee HW, Lam WH, Qiu L, Chan AS. C. Tetrahedron: Asymmetry 2006; 17: 1238
    • 7c Iwai T, Fujihara T, Tsuji Y. Chem. Commun. 2008; 6215
    • 8a Domazetis G, Tarpey B, Dolphin D, James BR. J. Chem. Soc., Chem. Commun. 1980; 939
    • 8b Park KH, Son SU, Chung YK. Chem. Commun. 2003; 1898
  • 10 Tiwari B, Zhang J, Chi YR. Angew. Chem. Int. Ed. 2012; 51: 1911
    • 11a Tang R.-J, Kang L, Yang L. Adv. Synth. Catal. 2015; 357: 2055
    • 11b Tang R.-J, He Q, Yang L. Chem. Commun. 2015; 51: 5925
  • 12 Venkateswarlu V, Kumar KA. A, Gupta S, Singh D, Vishwakarma RA, Sawant SD. Org. Biomol. Chem. 2015; 13: 7973
  • 13 Malamidou-Xenikaki E, Tsanakopoulou M, Chatzistefanou M, Hadjipavlou-Litina D. Tetrahedron 2015; 71: 5650
  • 14 Bhosale SM, Momin AA, Kunjir S, Rajamohanan PR, Kusurkar RS. Tetrahedron Lett. 2014; 55: 155
  • 15 Lynch BJ, Truhlar DG. J. Phys. Chem. A 2001; 105: 2936
    • 16a Han Y, Giroux A, Lepine C, Laliberte F, Huang Z, Perrier H, Bayly CI, Young RN. Tetrahedron 1999; 55: 11669
    • 16b Mortensen DS, Rodriguez AL, Carlson KE, Sun J, Katzenellenbogen BS, Katzenellenbogen JA. J. Med. Chem. 2001; 44: 3838
    • 16c Brendle JJ, Outlaw A, Kumar A, Boykin DW, Patrick DA, Tidwell RR, Werbovetz KA. Antimicrob. Agents Chemother. 2002; 46: 797
    • 16d Givens MD, Dykstra CC, Brock KV, Stringfellow DA, Kumar A, Stephens CE, Goker H, Boykin DW. Antimicrob. Agents Chemother. 2003; 47: 2223
    • 16e Chandra R, Kung M.-P, Kung HF. Bioorg. Med. Chem. Lett. 2006; 16: 1350
    • 16f Bey E, Marchais-Oberwinkler S, Negri M, Kruchten P, Oster A, Klein T, Spadaro A, Werth R, Frotscher M, Birk B, Hartmann RW. J. Med. Chem. 2009; 52: 6724
    • 16g Min J, Wang P, Srinivasan S, Nwachukwu JC, Guo P, Huang M, Carlson KE, Katzenellenbogen JA, Nettles KW, Zhou H.-B. J. Med. Chem. 2013; 56: 3346
    • 17a Garnier F, Yassar A, Hajlaoui R, Horowitz G, Deloffre F, Servet B, Ries S, Alnot P. J. Am. Chem. Soc. 1993; 115: 8716
    • 17b Dodabalapur A, Torsi L, Katz HE. Science 1995; 268: 270
    • 17c Dodabalapur A, Rothberg LJ, Fung AW. P, Katz HE. Science 1996; 272: 1462
    • 17d Noda T, Imae I, Noma N, Shirota Y. Adv. Mater. 1997; 9: 239
    • 17e Cai J, Farhat A, Tsitovitch PB, Bodani V, Toogood RD, Murphy RS. J. Photochem. Photobiol. A 2010; 212: 176
    • 18a Handy ST, Mayi D. Tetrahedron Lett. 2007; 48: 8108
    • 18b Tengho Toguem S.-M, Villinger A, Langer P. Synlett 2009; 3311
    • 18c Tengho Toguem S.-M, Villinger A, Langer P. Synlett 2010; 909
    • 18d Rahimi A, Namyslo JC, Drafz MH. H, Halm J, Hübner E, Nieger M, Rautzenberg N, Schmidt A. J. Org. Chem. 2011; 76: 7316
    • 19a Opsenica IM, Verbić TŽ, Tot M, Sciotti RJ, Pybus BS, Djurković-Djaković O, Slavić K, Šolaja BA. Bioorg. Med. Chem. 2015; 23: 2176
    • 19b Ajdačić V, Senerovic L, Vranić M, Pekmezovic M, Arsic-Arsnijevic V, Veselinovic A, Veselinovic J, Šolaja BA, Nikodinovic-Runic J, Opsenica IM. Bioorg. Med. Chem. 2016; 24: 1277
    • 20a Nakano M, Satoh T, Miura M. J. Org. Chem. 2006; 71: 8309
    • 20b You W, Yan X, Liao Q, Xi C. Org. Lett. 2010; 12: 3930
  • 21 Milner PJ, Yang Y, Buchwald SL. Organometallics 2015; 34: 4775
    • 22a ADF2013.01. SCM, Theoretical Chemistry, Vrije Universiteit Amsterdam, The Netherlands, http://www.scm.com.
    • 22b Guerra CF, Snijders JG, te Velde G, Baerends EJ. Theor. Chem. Acc. 1998; 99: 391
    • 22c te Velde G, Bickelhaupt FM, van Gisbergen SJ. A, Guerra CF, Baerends EJ, Snijders JG, Ziegler T. J. Comput. Chem. 2001; 22: 931
    • 23a Lee C, Yang W, Parr RG. Phys. Rev. B 1988; 37: 785
    • 23b Becke AD. J. Chem. Phys. 1993; 98: 5648
  • 24 Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104
  • 25 Swart M, Bickelhaupt FM. J. Comput. Chem. 2008; 29: 724
    • 26a Deng L, Ziegler T, Fan L. J. Chem. Phys. 1993; 99: 3823
    • 26b Deng L, Ziegler T. Int. J. Quant. Chem. 1994; 52: 731