Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(11): 1363-1367
DOI: 10.1055/s-0036-1558971
DOI: 10.1055/s-0036-1558971
letter
Design of Novel Hydrogen-Bonding Donor Organocatalysts and Their Application to Asymmetric Direct Aldol Reaction
Further Information
Publication History
Received: 02 February 2017
Accepted after revision: 23 February 2017
Publication Date:
15 March 2017 (online)
Abstract
Asymmetric catalytic activities of various organocatalysts bearing double hydrogen-bonding donor units showing different pK a values were examined for direct aldol reactions of cyclohexanone with aromatic aldehydes. Organocatalyst with motif exhibiting the highest acidity resulted in the corresponding aldol products with the highest enantioselectivity. A good correlation has been observed between the asymmetric catalytic activity for direct aldol reactions and acidities of double hydrogen-bonding donating units.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1558971.
- Supporting Information
-
References and Notes
- 1a Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138-5138
- 1b Modern Aldol Reactions . Vol. 1 and 2. Mahrwald R. Wiley-VCH; Weinheim: 2004
- 1c Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471-5471
- 1d Pellisier H. Tetrahedron 2007; 63: 9267-9267
- 1e Dondoni A, Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638-4638
- 1f Gruttadauria M, Giacalone F, Noto R. Adv. Synth. Catal. 2009; 351: 33-33
- 1g Lattanzi A. Chem. Commun. 2009; 1452-1452
- 1h Liu X, Lin L, Feng X. Chem. Commun. 2009; 6145-6145
- 1i Raj M, Singh VK. Chem. Commun. 2009; 6687-6687
- 1j Bhowmick S, Bhowmick KC. Tetrahedron: Asymmetry 2011; 22: 1945-1945
- 1k Bhanushali M, Zhao C.-G. Synthesis 2011; 1815-1815
- 1l Heravi MM, Asadi S. Tetrahedron: Asymmetry 2012; 23: 1431-1431
- 1m Bisai V, Bisai A, Singh VK. Tetrahedron 2012; 68: 4541-4541
- 1n Scheffler U, Mahrwald R. Chem. Eur. J. 2013; 19: 14346-14346
- 1o Mlynarski J, Baś S. Chem. Soc. Rev. 2014; 43: 577-577
- 2a Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672-12672
- 2b Miyabe H, Takemoto Y. Bull. Chem. Soc. Jpn. 2008; 81: 785-785
- 2c Connon SJ. Chem. Commun. 2008; 2499-2499
- 2d Connon SJ. Synlett 2009; 354-354
- 2e Takemoto Y. Chem. Pharm. Bull. 2010; 58: 593-593
- 2f Bhadury PS, Li H. Synlett 2012; 23: 1108-1108
- 3a Robak MT, Trincado M, Ellman JA. J. Am. Chem. Soc. 2007; 129: 15110-15110
- 3b Kimmel KL, Robak MT, Ellman JA. J. Am. Chem. Soc. 2009; 131: 8754-8754
- 3c Inokuma T, Furukawa M, Uno T, Suzuki Y, Yoshida K, Yano Y, Matsuzaki K, Takemoto Y. Chem. Eur. J. 2011; 17: 10470-10470
- 3d Kimmel KL, Weaver JD, Lee M, Ellman JA. J. Am. Chem. Soc. 2012; 134: 9058-9058
- 3e Kobayashi Y, Taniguchi Y, Hayama N, Inokuma T, Takemoto Y. Angew. Chem. Int. Ed. 2013; 52: 11114-11114
- 4a Malerich JP, Hagihara K, Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416-14416
- 4b Alemán J, Parra A, Jiang H, Jørgensen KA. Chem. Eur. J. 2011; 17: 6890-6890
- 5a Kanada Y, Yuasa H, Nakashima K, Murahashi M, Tada N, Itoh A, Koseki Y, Miura T. Tetrahedron Lett. 2013; 54: 4896-4896
- 5b Hirashima S, Sakai T, Nakashima K, Watanabe N, Koseki Y, Mukai K, Kanada Y, Tada N, Itoh A, Miura T. Tetrahedron Lett. 2014; 55: 4334-4334
- 5c Nakashima K, Hirashima S, Kawada M, Koseki Y, Tada N, Itoh A, Miura T. Tetrahedron Lett. 2014; 55: 2703-2703
- 5d Nakashima K, Hirashima S, Akutsu H, Koseki Y, Tada N, Itoh A, Miura T. Tetrahedron Lett. 2015; 56: 558-558
- 5e Hirashima S, Nakashima K, Fujino Y, Arai R, Sakai T, Kawada M, Koseki Y, Murahashi M, Tada N, Itoh A, Miura T. Tetrahedron Lett. 2014; 55: 4619-4619
- 5f Hirashima S, Arai R, Nakashima K, Kawai N, Kondo J, Koseki Y, Miura T. Adv. Synth. Catal. 2015; 357: 3863-3863
- 6a Nakashima K, Kawada M, Hirashima S, Kato M, Koseki Y, Miura T. Synlett 2015; 26: 1248-1248
- 6b Nakashima K, Kawada M, Hirashima S, Kosugi A, Kato M, Yoshida A, Koseki Y, Miura T. Tetrahedron: Asymmetry 2016; 27: 888-888
- 7a Takamura K, Fuse T, Arai K, Kusu F. J. Electroanal. Chem. 1999; 468: 53-53
- 7b Kim H.-S, Chung TD, Kim H. J. Electroanal. Chem. 2001; 498: 209-209
- 8 pK a values of thiourea derivatives in DMSO solutions were reported as follows: O=C(NH2)2 (26.9), S=C(NH2)2 (18.7), S=C(NHPh)2 (13.4). See: Jakab G, Tancon C, Zhang Z, Lippert KM, Schreiner PR. Org. Lett. 2014; 14: 1724-1724
- 9 Hanack M, Hackenberg J, Menke O, Subramanian LR, Schlichenmaier R. Synthesis 1994; 249-249
- 10 Organocatalyst 5 Colorless powder; mp 147–148 °C. 1H NMR (400 MHz, CDCl3): δ = 1.35 (12 H, d, J = 6.4 Hz), 3.86–4.03 (2 H, m), 6.02 (2 H, br, NH), 13C NMR (100 MHz, CD3CN): δ = 19.9, 21.0, 46.0, 50.3, 66.7, 153.4. HRMS (ESI-TOF): m/z calcd for C11H16F6N2NaO4S2 [M + Na]+: 441.0353; found: 441.0357.
- 11 Organocatalyst 8 Colorless powder; mp 225–227 °C; [α]D 20 +79.2 (c 1.00, MeOH). 1H NMR (400 MHz, CD3OD): δ = 1.97 (m, 2 H), 2.13–2.15 (m, 2 H), 3.25–3.33 (m, 2 H), 3.5 (dd, J = 5.7, 14.8 Hz, 1 H), 3.78 (m, 1 H), 3.93 (m, 1 H), 7.55 (s, 1 H), 7.60 (s, 2 H). 13C NMR (100 MHz, CD3OD): δ = 25.6, 28.0, 45.0, 46.5, 62.4, 68.9, 116.7, 120.4, 125.0 (q, 1 J C–F = 271.7 Hz), 125.2, 132.5 (q, 2 J C–F = 32.7 Hz), 151.7, 154.2. Anal. Calcd for C17H15F12N3O4S2: C, 33.07; H, 2.45; N, 6.81. Found: C, 32.98; H, 2.59; N, 6.68. Organocatalyst 9 Colorless powder; mp 243–245 °C; [α]D 20 +85.7 (c 1.00, MeOH). 1H NMR (400 MHz, CD3OD): δ = 1.90–2.03 (m, 2 H), 2.11–2.19 (m, 2 H), 3.30–3.33 (m, 2 H), 3.55 (dd, J = 6.2, 15.0 Hz, 1 H), 3.84 (dd, J = 2.8, 15.0 Hz, 1 H), 3.87–3.97 (m, 1 H), 7.34 (S, 2 H), 7.51 (s, 1 H); 13C NMR (100 MHz, CD3OD): δ = 25.6, 28.1, 45.0, 46.6, 62.6, 68.8, 116.8, 125.0 (q, 1 J C-F = 272.0 Hz), 125.6, 132.7 (q, 2 J C–F = 33.0 Hz), 152.8, 154.4. Anal. Calcd for C18H15F12N3O4S2: C, 34.35; H, 2.40; N, 6.68. Found: C, 34.51; H, 2.68; N, 6.65.
- 12 For pioneer work, see: List B, Lerner RA, Barbas III. CF. J. Am. Chem. Soc. 2000; 122: 2395-2395
- 13a Li Z.-Y, Chen Y, Zheng C.-Q, Yin Y, Wang L, Sun X.-Q. Tetrahedron 2017; 73: 78-78
- 13b Mridha M, Ma G, Palo-Nieto C, Afewerki S, Cordova A. Synthesis 2017; 49: 383-383
- 13c Yadav GD, Singh S. RSC Adv. 2016; 6: 100459-100459
- 13d Ashokkumar V, Chithiraikumar C, Siva A. Org. Biomol. Chem. 2016; 14: 9021-9021
- 13e Fanjul-Mosterín N, Concellón C, Amo V. Org. Lett. 2016; 18: 4266-4266
- 13f Guo G, Wu Y, Zhao X, Wang J, Zhang L, Cui Y. Tetrahedron: Asymmetry 2016; 27: 740-740
- 13g Lan L, Xie G, Wu T, Feng D, Ma X. RSC Adv. 2016; 6: 55894-55894
- 13h Sóti PL, Yamashita H, Sato K, Narumi T, Toda M, Watanabe N, Marosi G, Mase N. Tetrahedron 2016; 72: 1984-1984
- 14 Typical Procedure of the Aldol Reaction Using Organocatalyst 9 To a mixture of p-nitrobenzaldehyde (10a, 30.2 mg, 0.200 mmol) and cyclohexanone (209 μL, 2.00 mmol) was added organocatalyst 9 (12.6 mg, 0.0200 mmol) at r.t. After stirring at r.t. for 72 h, the reaction mixture was directly purified by flash column chromatography on silica gel with a 2:1 mixture of hexane and EtOAc to afford 12a (44.9 mg, 90%) as a white powder.
For selected reviews, see:
For reviews, see:
For a review, see:
For selected recent work, see: