Subscribe to RSS
DOI: 10.1055/s-0028-1087557
The Design of Novel, Synthetically Useful (Thio)urea-Based Organocatalysts
Publication History
Publication Date:
06 February 2009 (online)

Abstract
Selected recent developments in the area of (thio)urea-mediated organocatalysis from our laboratory are summarised.
1 Introduction and Background
2 Catalysis with Achiral (Thio)ureas
2.1 The Baylis-Hillman Reaction
2.2 The Corey-Chaykovsky Reaction
2.3 Organocatalytic Reduction of Ketones
2.4 Ring Opening of Epoxides
3 Catalysis with Chiral (Thio)ureas
3.1 Modified Cinchona Alkaloid Derivatives
3.1.1 Asymmetric Michael Addition
3.1.2 Asymmetric Nitroolefin Cyclopropanation
3.1.3 meso-Anhydride Desymmetrisation
3.1.4 Dynamic Kinetic Resolution of Azlactones
3.2 Friedel-Crafts-type Reactions: Axially Chiral Thioureas
4 Summary
Key words
organocatalysis - Michael additions - asymmetric synthesis - nitroalkenes - sulfonium ions
- For selected recent reviews dealing with organocatalysis, see:
-
1a
Alcaide B.Almendros P. Angew. Chem. Int. Ed. 2008, 47: 4632 -
1b
Yu X.Wang W. Org. Biomol. Chem. 2008, 6: 2037 -
1c
Dondoni A.Massi A. Angew. Chem. Int. Ed. 2008, 47: 4638 -
1d
Connon SJ. Org. Biomol. Chem. 2007, 5: 3407 -
1e
Ting A.Schaus SE. Eur. J. Org. Chem. 2007, 5797 -
1f
Lelais G.MacMillan DWC. In Frontiers in Asymmetric CatalysisMikami K.Lautens M. Wiley; Hoboken: 2007. -
1g
Almaşi D.Alonso DA.Nájera C. Tetrahedron: Asymmetry 2007, 18: 299 -
1h
de Figueiredo RM.Christmann M. Eur. J. Org. Chem. 2007, 2575 -
1i
Tsogoeva SB. Eur. J. Org. Chem. 2007, 1701 -
1j
Mukherjee S.Yang JW.Hoffmann S.List B. Chem. Rev. 2007, 107: 5471 -
1k
Erkkilä A.Majander I.Pihko PM. Chem. Rev. 2007, 107: 5416 -
1l
Gaunt MJ.Johansson CCC. Chem. Rev. 2007, 107: 5596 -
1m
Enders D.Niemeier O.Henseler A. Chem. Rev. 2007, 107: 5606 -
1n
Atodiresi I.Schiffers I.Bolm C. Chem. Rev. 2007, 107: 5683 -
1o
Doyle AG.Jacobsen EN. Chem. Rev. 2007, 107: 5713 -
1p
McGarrigle EM.Myers EL.Illa O.Shaw MA.Riches SL.Aggarwal VK. Chem. Rev. 2007, 107: 5841 -
1q
Wurz RP. Chem. Rev. 2007, 107: 5570 -
1r
Connon SJ. Angew. Chem. Int. Ed. 2006, 45: 3909 -
1s
List B. Chem. Commun. 2006, 819 -
1t
Taylor MS.Jacobsen EN. Angew. Chem. Int. Ed. 2006, 45: 1520 -
1u
Akiyama T.Itoh J.Fuchibe K. Adv. Synth. Catal. 2006, 348: 999 -
1v
Connon SJ. Lett. Org. Chem. 2006, 3: 333 -
1w
Gaunt MJ.Johansson CCC.McNally A.Vo NT. Drug Discovery Today 2007, 12: 8 - For selected reviews of (thio)urea-based organocatalysis, see:
-
2a
Connon SJ. Chem. Commun. 2008, 2499 -
2b
Connon SJ. Chem. Eur. J. 2006, 12: 5418 -
2c
Takemoto Y. Org. Biomol. Chem. 2005, 3: 4299 -
2d
Schreiner PR. Chem. Soc. Rev. 2003, 32: 289 - 3
Hine J.Ahn K.Gallucci JC.Linden S.-M. J. Am. Chem. Soc. 1984, 106: 7980 - 4
Hine J.Linden S.-M.Kanagasabapathy VM. J. Am. Chem. Soc. 1985, 107: 1082 - 5
Hine J.Linden S.-M.Kanagasabapathy VM. J. Org. Chem. 1985, 50: 5096 - For further work on the same topic, see:
-
6a
Hine J.Hahn S.Miles DE.Ahn K. J. Org. Chem. 1985, 50: 5092 -
6b
Hine J.Hahn S.Miles DE. J. Org. Chem. 1986, 51: 577 -
6c
Hine J.Ahn K. J. Org. Chem. 1987, 52: 2083 -
6d
Hine J.Ahn K. J. Org. Chem. 1987, 52: 2089 - 7
Kelly TR.Meghani P.Ekkundi VS. Tetrahedron Lett. 1990, 31: 3381 -
8a
Etter MC.Panunto TW. J. Am. Chem. Soc. 1988, 110: 5896 -
8b
Etter MC.Urbañczyk-Lipkowska Z.Zia-Ebrahimi M.Panunto TW. J. Am. Chem. Soc. 1990, 112: 8415 - 9 Previously, Tel and Engberts had
obtained a crystal structure of an unstable N,N′-bis(α-tosylbenzyl)urea-acetone hydrogen-bonded
adduct; see:
Tel RM.Engberts JBFN. J. Chem. Soc., Perkin Trans. 2 1976, 483 - For further general references, see:
-
10a
Etter MC. Acc. Chem. Res. 1990, 23: 120 -
10b
Etter MC. J. Phys. Chem. 1991, 95: 4601 -
10c
Kelly TR.Kim MH. J. Am. Chem. Soc. 1994, 116: 7072 - 11
Curran DP.Kuo LH. J. Org. Chem. 1994, 59: 3259 - 12
Curran DP.Kuo LH. Tetrahedron Lett. 1995, 36: 6647 - 13
Sigman MS.Jacobsen EN. J. Am. Chem. Soc. 1998, 120: 4901 -
14a
Sigman MS.Vachal P.Jacobsen EN. Angew. Chem. Int. Ed. 2000, 39: 1279 -
14b
Su JT.Vachal P.Jacobsen EN. Adv. Synth. Catal. 2001, 343: 197 -
14c
Vachal P.Jacobsen EN. Org. Lett. 2000, 2: 867 -
14d
Vachal P.Jacobsen EN. J. Am. Chem. Soc. 2002, 124: 10012 - 15
Schreiner PR.Wittkopp A. Org. Lett. 2002, 4: 217 - 16
Schreiner PR.Wittkopp A. Chem. Eur. J. 2003, 9: 407 - 17
March J. Advanced Organic Chemistry 4th ed.: Wiley-Interscience; New York: 1992. - 18
Baylis AB, andHillman MED. inventors; Ger. Offen. 2155113. ; US Patent 3743669; Chem. Abstr. 1972, 77, 34174q - For selected reviews, see:
-
19a
Masson G.Housseman C.Zhu J. Angew. Chem. Int. Ed. 2007, 46: 4614 -
19b
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 -
19c
Langer P. Angew. Chem. Int. Ed. 2000, 39: 3049 -
20a
Hill JS.Issacs NS. J. Phys. Org. Chem. 1990, 3: 285 -
20b
Bode ML.Kaye PT. Tetrahedron Lett. 1991, 32: 5611 -
21a
Price KE.Broadwater SJ.Jung HM.McQuade DT. Org. Lett. 2005, 7: 147 -
21b
Price KE.Broadwater SJ.Walker BJ.McQuade DT. J. Org. Chem. 2005, 70: 3980 - 22
Aggarwal VK.Fulford SY.Lloyd-Jones GC. Angew. Chem. Int. Ed. 2005, 44: 1706 - 23 This mechanistic rationale was partially
supported by a study on the aza-Baylis-Hillman reaction
from Leitner’s group, which found rate-limiting elimination
in the absence of protic derivatives but not in the presence of
the same (although, significantly, without observable autocatalysis); see:
Buskens P.Klankermeyer J.Leitner W. J. Am. Chem. Soc. 2005, 127: 16762 - We later observed the same relationship between catalyst basicity (all other things being approximately equal) and reactivity in the amine-catalysed hydroalkoxylation of Michael acceptors; see:
-
24a
Faltin C.Fleming EM.Connon SJ. J. Org. Chem. 2004, 69: 6496 -
24b
Murtagh JE.McCooey SH.Connon SJ. Chem. Commun. 2005, 227 - For examples, see:
-
25a
Hamann BC.Branda NR.Rebek JR. Tetrahedron Lett. 1993, 34: 6837 -
25b
Smith PJ.Reddington MV.Wilcox CS. Tetrahedron Lett. 1992, 33: 6085 -
25c
Wilcox CS.Kim E.-I.Romano D.Kuo LH.Burt AL.Curran DP. Tetrahedron 1995, 51: 621 -
25d
Scheerder J.Engbersen JFJ.Casnati A.Ungaro R.Reinhoudt DN. J. Org. Chem. 1995, 60: 6448 -
25e
Nishizawa S.Kato R.Hayashita T.Teramae N. Anal. Sci. 1998, 14: 595 -
25f
Nam KC.Kang SO.Ko SW. Bull. Korean Chem. Soc. 1999, 20: 953 - 26
Maher DJ.Connon SJ. Tetrahedron Lett. 2004, 45: 1301 - 27 The pK
a (DMSO)
values for N,N′-diphenylurea
and N,N′-diphenylthiourea
are 19.55 and 13.4, respectively; see:
Bordwell FG. Acc. Chem. Res. 1988, 21: 456 -
28a
Ameer F.Drewes SE.Freese S.Kaye PT. Synth. Commun. 1988, 18: 495 -
28b
Drewes SE.Freese SD.Emslie ND.Roos GHP. Synth. Commun. 1988, 18: 1565 - 29
Aggarwal VK.Emme I.Fulford SY. J. Org. Chem. 2003, 68: 692 -
30a
Johnson AW.LaCount RB. J. Am. Chem. Soc. 1961, 83: 417 -
30b
Corey EJ.Chaykovsky M. J. Am. Chem. Soc. 1962, 84: 867 -
30c
Franzen V.Driesen H.-E. Chem. Ber. 1963, 96: 1881 -
30d
Corey EJ.Chaykovsky M. J. Am. Chem. Soc. 1965, 87: 1353 - For recent reviews, see reference 1p and:
-
31a
Li A.-H.Dai L.-X.Aggarwal VK. Chem. Rev. 1997, 97: 2341 -
31b
Aggarwal VK.Richardson J. Chem. Commun. 2003, 2644 -
31c
Aggarwal VK.Winn CL. Acc. Chem. Res. 2004, 37: 611 - For examples, see:
-
32a
Merz A.Märk G. Angew. Chem., Int. Ed. Engl. 1973, 12: 845 -
32b
Bermand C.Comel A.Kirsch G. ARKIVOC 2000, (ii): 128 -
32c
Borredon ME.Delmas M.Gaset A. Tetrahedron Lett. 1982, 23: 5283 -
32d
Borredon ME.Delmas M.Gaset A. Tetrahedron 1987, 43: 3945 -
32e
Bouda H.Borredon ME.Delmas M.Gaset A. Synth. Commun. 1987, 17: 503 -
32f
Lemini C.Ordonez M.Pérez-Flores J.Cruz-Almanza R. Synth. Commun. 1995, 25: 2695 -
32g
Ahmed A.Hoegenauer EK.Enev VS.Hanbauer M.Kaehlig H.Oehler E.Mulzer J. J. Org. Chem. 2003, 68: 3026 - 34 For a recent study on the mechanism
of the Corey-Chaykovsky reaction, see:
Edwards DR.Montoya-Peleaz P.Crudden CM. Org. Lett. 2007, 9: 5481 - 35
Kavanagh SA.Piccinini A.Fleming EM.Connon SJ. Org. Biomol. Chem. 2008, 6: 1339 - For selected examples, see:
-
36a
Ohnishi Y.Kagami M.Ohno A. J. Am. Chem. Soc. 1975, 97: 4766 -
36b
de Vries JG.Kellogg RM. J. Am. Chem. Soc. 1979, 101: 2759 -
36c
Ohno A.Ikeguchi M.Kimura T.Oka S. J. Am. Chem. Soc. 1979, 101: 7036 -
36d
Jouin P.Troostwijk CB.Kellogg RM. J. Am. Chem. Soc. 1981, 103: 2091 -
36e
Kanomata N.Nakata T. Angew. Chem., Int. Ed. Engl. 1997, 36: 1207 -
36f
Saito R.Naruse S.Takano K.Fukuda K.Katoh A.Inoue Y. Org. Lett. 2006, 8: 2067 - For examples, see:
-
38a
Wang JW.Hechavarria Fonseca MT.List B. Angew. Chem. Int. Ed. 2004, 43: 6660 -
38b
Wang JW.Hechavarria Fonseca MT.Vignola N.List B. Angew. Chem. Int. Ed. 2005, 44: 108 -
38c
Ouellet SG.Tuttle JB.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 32 -
38d
Wang JW.Hechavarria Fonseca MT.List B. J. Am. Chem. Soc. 2005, 127: 15036 -
38e
Huang Y.Walji AM.Larsen CH.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 15051 -
38f
Mayer S.List B. Angew. Chem. Int. Ed. 2006, 45: 4195 -
39a
Rueping M.Sugiono E.Theissmann T. Synlett 2005, 2367 -
39b
Rueping M.Sugiono E.Azap C.Theissmann T.Bolte M. Org. Lett. 2005, 7: 3781 -
39c
Hoffmann S.Seayad AM.List B. Angew. Chem. Int. Ed. 2005, 44: 7424 -
39d
Storer RI.Carrera DE.Ni Y.MacMillan DWC. J. Am. Chem. Soc. 2006, 128: 84 -
39e
Rueping M.Thiessmann T.Antonchick AP. Synlett 2006, 1071 -
39f
Rueping M.Antonchick AP.Thiessmann T. Angew. Chem. Int. Ed. 2006, 45: 3683 - 40
Procuranti B.Connon SJ. Chem. Commun. 2007, 1421 - For examples of metal(ion)-based catalysis of this reaction, see:
-
43a
Kantam ML.Laha S.Yadav J.Sreedhar B. Tetrahedron Lett. 2006, 47: 6213 -
43b
Azizi M.Mehrazama S.Saidi MR. Can. J. Chem. 2006, 84: 800 -
43c
Bandini M.Fagioli M.Melloni A.Umani-Ronchi A. Adv. Synth. Catal. 2004, 346: 573 -
43d For an example of this
reaction in trifluoroethanol solvent, see:
Bandini M.Cozzi PG.Melchiorre P.Umani-Ronchi A. J. Org. Chem. 2002, 67: 5386 -
43e
Westermaier M.Mayr H. Chem. Eur. J. 2008, 14: 1638 - 44
Fleming EM.Quigley C.Rozas I.Connon SJ. J. Org. Chem. 2008, 73: 948 - 45 Schreiner had previously demonstrated
powerful cooperative catalysis between water and 6 in
the addition of amines to epoxides; however,
poor amine nucleophiles such as anilines were not used. Relatively
nonselective additions of alcohols and thiols to an epoxide were
also reported; see:
Kleiner CM.Schreiner PR. Chem. Commun. 2006, 4315 - 46 Recently, Schreiner and co-workers
demonstrated impressive cooperative catalysis between 6 and mandelic acid in the alcoholysis
of epoxides; see:
Weil T.Kotke M.Kleiner CM.Schreiner PR. Org. Lett. 2008, 10: 1513 - 47
Hiemstra H.Wynberg H. J. Am. Chem. Soc. 1981, 103: 417 - 48
Okino T.Hoashi Y.Takemoto Y. J. Am. Chem. Soc. 2003, 125: 12672 - 49
Okino T.Hoashi Y.Furukawa T.Xu X.Takemoto Y. J. Am. Chem. Soc. 2005, 127: 119 - For examples of metal(ion)-based catalytic systems for this reaction, see:
-
50a
Ji J.Barnes DM.Zhang J.King SA.Wittenberger SJ.Morton HE. J. Am. Chem. Soc. 1999, 121: 10215 -
50b
Barnes DM.Ji J.Fickes MG.Fitzgerald MA.King SA.Morton HE.Plagge FA.Preskill M.Wagaw SH.Wittenberger SJ.Zhang J. J. Am. Chem. Soc. 2002, 124: 13097 -
50c
Watanabe M.Ikagawa A.Wang H.Murata K.Ikariya T. J. Am. Chem. Soc. 2004, 126: 11148 - 51 Deng and co-workers have also catalysed
this reaction using 6′-demethylated cinchona alkaloid catalysts;
see:
Li H.Wang Y.Tang L.Deng L. J. Am. Chem. Soc. 2004, 126: 9906 - 52
McCooey SH.Connon SJ. Angew. Chem. Int. Ed. 2005, 44: 6367 - 53 It is worth noting that Pápai
and co-workers have recently proposed an alternative mechanistic
picture based on computational studies; see:
Hamza A.Schubert G.Soós T.Pápai I. J. Am. Chem. Soc. 2006, 128: 13151 - 54
Li B.-J.Jiang L.Liu M.Chen Y.-C.Ding L.-S.Wu Y. Synlett 2005, 603 - 55
Vakulya B.Varga S.Csámpai A.Soós T. Org. Lett. 2005, 7: 1967 - 56
Ye J.Dixon DJ.Hynes PS. Chem. Commun. 2005, 4481 -
57a
Wessjohann LA.Brandt W.Thiemann T. Chem. Rev. 2003, 103: 1625 -
57b
Donaldson WA. Tetrahedron 2001, 57: 8589 -
57c
Faust D. Angew. Chem. Int. Ed. 2001, 40: 2251 -
58a
Gnad F.Reiser O. Chem. Rev. 2003, 103: 1603 -
58b
Cativelia C.Diaz-de-Villegas MD. Tetrahedron: Asymmetry 2000, 11: 645 -
58c
De Pol S.Zorn C.Klein CD.Zerbe O.Reiser O. Angew. Chem. Int. Ed. 2004, 43: 511 - 59 Aggarwal and co-workers have reported
a Cu(acac)2-catalysed cycloaddition of sulfonium ylides
to Michael acceptors which gives good yields and stereoselectivities with
enone substrates but poor yields and diastereoselectivities with
nitroolefins; see:
Aggarwal VK.Smith HW.Hynd G.Jones RVH.Fieldhouse R.Spey SE. J. Chem. Soc., Perkin Trans. 1 2000, 3267 - Catalytic asymmetric Simmons-Smith-type cyclopropanation methodologies are best suited to electron-rich olefin substrates; see:
-
60a
Lebel H.Marcoux F.Molinaro C.Charette AB. Chem. Rev. 2003, 103: 977 -
60b
Hartley RC.Caldwell ST. J. Chem. Soc., Perkin Trans. 1 2000, 477 -
60c
Lautens M.Klute W.Tam W. Chem. Rev. 1996, 96: 49 - For representative references concerning the development of asymmetric Michael-based cyclopropanation methodologies, see:
-
61a
Aggarwal VK.Smith HW.Jones RVH.Fieldhouse R. Chem. Commun. 1997, 1785 -
61b
Aggarwal VK.Alonso E.Fang G.Ferrara M.Hynd G.Porcelloni M. Angew. Chem. Int. Ed. 2001, 40: 1433 -
61c
Papageorgiou CD.Ley SV.Gaunt MJ. Angew. Chem. Int. Ed. 2003, 42: 828 -
61d
Bremeyer N.Smith SC.Ley SV.Gaunt MJ. Angew. Chem. Int. Ed. 2004, 43: 2681 -
61e
Papageorgiou CD.Cubillo de Dios MA.Ley SV.Gaunt MJ. Angew. Chem. Int. Ed. 2004, 43: 4641 -
61f
Kunz RK.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 3240 -
61g
Deng X.-M.Cai P.Ye S.Sun X.-L.Liao W.-W.Li K.Tang Y.Wu Y.-D.Dai L.-X. J. Am. Chem. Soc. 2006, 128: 9730 -
61h
Aggarwal VK. Acc. Chem. Res. 2004, 37: 611 - 62
McCooey SH.McCabe T.Connon SJ. J. Org. Chem. 2006, 71: 7494 - 63 For a recent review of asymmetric
cyclopropanation, see:
Pellissier H. Tetrahedron 2008, 64: 7041 - For reviews, see reference 1n and:
-
64a
Wong C.-H.Whitesides GM. Enzymes in Synthetic Organic Chemistry Elsevier; Oxford: 1994. -
64b
Willis MC. J. Chem. Soc., Perkin Trans. 1 1999, 175 -
64c
Spivey AC.Andrews BI. Angew. Chem. Int. Ed. 2001, 40: 3131 -
64d
Chen Y.McDaid P.Deng L. Chem. Rev. 2003, 103: 2965 -
64e
Tian S.-K.Chen Y.Hang J.Tang L.McDaid P.Deng L. Acc. Chem. Res. 2004, 37: 621 -
65a
Bolm C.Gerlach A.Dinter CL. Synlett 1999, 195 -
65b
Bolm C.Schiffers I.Dinter CL.Gerlach A. J. Org. Chem. 2000, 65: 6984 -
65c See also:
Bolm C.Schiffers I.Atodiresei I.Hackenberger PR. Tetrahedron: Asymmetry 2003, 14: 3455 -
65d
Rodríguez B.Rantanen T.Bolm C. Angew. Chem. Int. Ed. 2006, 45: 6924 - 66
Chen Y.Tian S.-K.Deng L. J. Am. Chem. Soc. 2000, 122: 9542 -
67a
Hiratake J.Yamamoto Y.Oda J. J. Chem. Soc., Chem. Commun. 1985, 1717 -
67b
Hiratake J.Inagaki M.Yamamoto Y.Oda J. J. Chem. Soc., Perkin Trans. 1 1987, 1053 - 68 Mass spectroscopic evidence supporting
a nucleophilic catalysis mechanism has also been reported. Thus,
it should be noted that both mechanisms may operate simultaneously; see:
Bigi F.Carloni S.Maggi R.Mazzacani A.Sartori G.Tanzi G. J. Mol. Catal. A: Chem. 2002, 182-183: 533 - 69
Peschiulli A.Gun’ko Y.Connon SJ. J. Org. Chem. 2008, 73: 2454 - 71 Very shortly after our paper, a
similar study using higher catalyst loadings (10 mol%)
was reported; see:
Rho SH.Oh SH.Lee JW.Lee JY.Chin J.Song CE. Chem. Commun. 2008, 1208 -
72a
Faber K. Chem. Eur. J. 2001, 7: 5004 -
72b
Pellissier H. Tetrahedron 2003, 59: 8291 - 73
De Jersey J.Zerner B. Biochemistry 1969, 8: 1967 -
74a
Berkessel A.Cleemann F.Mukherjee S.Müller TN.Lex J. Angew. Chem. Int. Ed. 2005, 44: 807 -
74b
Berkessel A.Mukherjee S.Cleemann F.Müller TN.Lex J. Chem. Commun. 2005, 1898 -
74c
Berkessel A.Mukherjee S.Müller TN.Cleemann F.Roland K.Brandenburg M.Neudörfl J.-M.Lex J. Org. Biomol. Chem. 2006, 4: 4319 - 75
Peschiulli A.Quigley C.Tallon S.Gun’ko YK.Connon SJ. J. Org. Chem. 2008, 73: 6409 -
76a
Dawson PE.Muir TW.Clark-Lewis I.Kent SB. Science (Washington, D.C.) 1994, 266: 776 -
76b
Macmillan D. Angew. Chem. Int. Ed. 2006, 45: 7668 - 77 Only one such protocol has been
reported; see:
Honjo T.Sano S.Shiro M.Nagao Y. Angew. Chem. Int. Ed. 2005, 44: 5838 - For reviews, see:
-
78a
Bandini M.Melloni A.Tommasi S.Umani-Ronchi A. Synlett 2005, 1199 -
78b
Bandini M.Melloni A.Umani-Ronchi A. Angew. Chem. Int. Ed. 2004, 43: 550 -
78c
Jørgensen KA. Synthesis 2003, 1117 -
79a
Paras NA.MacMillan DWC. J. Am. Chem. Soc. 2001, 123: 4370 -
79b
Austin JF.MacMillan DWC.
J. Am. Chem. Soc. 2002, 124: 1172 - 81
Dessole G.Herrera RP.Ricci A. Synlett 2004, 2374 -
82a For
a related report, see:
Herrera RP.Sgarzani V.Bernardi L.Ricci A. Angew. Chem. Int. Ed. 2005, 44: 6576 -
82b
Herrera RP.Monge D.Martín-Zamora E.Fernández R.Lassaletta JM. Org. Lett. 2007, 9: 3303 - 83
Fleming EM.McCabe T.Connon SJ. Tetrahedron Lett. 2006, 47: 7037 - 84 During the course of our work, Jørgensen
and co-workers reported a non-(thio)urea-based catalyst for these
reactions. Product enantioselectivity was of the same order as that found
in our study; however, using their system, aliphatic substrates
proved more difficult than their aromatic counterparts; see:
Zhuang W.Hazell RG.Jørgensen KA. Org. Biomol. Chem. 2005, 3: 2566
References
See reference [²7] for details.
37For a recent review of this topic, see reference [¹d] .
41This hypothesis is supported by the presence of the reduced form of BNA as the only heterocyclic species observable (by ¹H NMR spectroscopy) in the reduction of benzoin by BNA (organic phase).
42It is assumed that product inhibition is not problematic in the systems being studied. To ensure that this is the case, the stability of the product-catalyst complex should be calculated and compared with that of the corresponding catalyst-substrate complex.
70A simple base wash, extraction, acidification and extraction sequence furnishes pure product.
80For a recent review of iminium catalysis, see reference [¹k] .
85For examples of the demonstrable s-cis,cis-conformational preference of(thio)ureas, see references [8] , [9] and [49] .