Subscribe to RSS
DOI: 10.1055/s-0036-1572361
Biochemical Insights into Merlin/NF2 Pathophysiology and Biologically Targeted Therapies in Childhood NF2 and Related Forms
Publication History
23 December 2015
31 December 2015
Publication Date:
15 February 2016 (online)
Abstract
Neurofibromatosis type 2 (NF2; MIM # 101000) is an autosomal dominant disorder characterized by the occurrence of vestibular schwannomas (VSs), schwannomas of other cranial, spinal, and cutaneous nerves, cranial and spinal meningiomas, and/or other central nervous system (CNS) tumors (e.g., ependymomas, astrocytomas). Additional features include early-onset cataracts, optic nerve sheath meningiomas and retinal hamartomas, dermal schwannomas (i.e., NF2-plaques), and few café au lait spots. Clinically, NF2 children fall into two main groups: (1) congenital NF2, with bilateral VSs detected as early as the first days to months of life, which can be stable/asymptomatic for one to two decades and suddenly progress; and (2) severe prepubertal (Wishart type) NF2, with multiple (and rapidly progressive) CNS tumors other than VS, which usually present first, years before VSs (vs. the classic adult [Gardner type] NF2, with bilateral VSs presenting in young adulthood, sometimes as the only disease feature). Some individuals can develop unilateral VS associated with ipsilateral meningiomas or multiple schwannomas localized to one part of the peripheral nervous system (i.e., mosaic/segmental NF2) or multiple non-VS, non-intradermal cranial, spinal, and peripheral schwannomas (histologically proven) (schwannomatosis). NF2 is caused by mutations in the NF2 gene at chromosome 22q12.1, which encodes for a protein called merlin or schwannomin, most similar to the ezrin-radixin-moesin (ERM) proteins; mosaic NF2 is due to mosaic phenomena for the NF2 gene, whereas schwannomatosis is caused by coupled germ-line and mosaic mutations either in the SMARCB1 gene (SWNTS1; MIM # 162091) or the LZTR1 gene (SWNTS2; MIM # 615670), both falling within the 22q region and the NF2 gene. Data driven from in vitro and animal studies on the merlin pathway allowed biologically targeted treatment strategies (e.g., lapatinib, erlotinib, bevacizumab) aimed to multiple tumor shrinkage and/or regression and tumor arrest of progression with functional improvement. In the present review we focus on the pathophysiology of merlin structure and function and on its posttranslational and upstream/downstream regulation in the different forms of NF2 in the pediatric age.
-
References
- 1 Huson SM, Hughes RAC. The Neurofibromatoses. A Pathogenetic and Clinical Overview. London, UK: Churchill Livingstone; 1994
- 2 Evans DG. Neurofibromatosis type 2 (NF2): a clinical and molecular review. Orphanet J Rare Dis 2009; 4: 16
- 3 Asthagiri AR, Parry DM, Butman JA , et al. Neurofibromatosis type 2. Lancet 2009; 373 (9679) 1974-1986
- 4 Evans DG. Neurofibromatosis 2 [Bilateral acoustic neurofibromatosis, central neurofibromatosis, NF2, neurofibromatosis type II]. Genet Med 2009; 11 (9) 599-610
- 5 Wishart JH. Case of tumours in the skull, dura mater, and brain. Edinburgh Med Surg J 1822; 18: 393-397
- 6 Gardner WJ, Frazier CH. Hereditary bilateral acoustic tumors. J Hered 1933; 22: 7-8
- 7 Gardner WJ, Turner O. Bilateral acoustic neurofibromas: further clinical and pathologic data on hereditary deafness and Recklinghausen's disease. Arch Neurol Psychiatry 1940; 44: 76-99
- 8 Young DF, Eldridge R, Gardner WJ. Bilateral acoustic neuroma in a large kindred. JAMA 1970; 214 (2) 347-353
- 9 Seizinger BR, Martuza RL, Gusella JF. Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature 1986; 322 (6080) 644-647
- 10 Rouleau GA, Merel P, Lutchman M , et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 1993; 363 (6429) 515-521
- 11 Trofatter JA, MacCollin MM, Rutter JL , et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 1993; 72 (5) 791-800
- 12 Evans DG, Huson SM, Donnai D , et al. A genetic study of type 2 neurofibromatosis in the United Kingdom. I. Prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity. J Med Genet 1992; 29 (12) 841-846
- 13 Evans DG, Huson SM, Donnai D , et al. A genetic study of type 2 neurofibromatosis in the United Kingdom. II. Guidelines for genetic counselling. J Med Genet 1992; 29 (12) 847-852
- 14 Parry DM, Eldridge R, Kaiser-Kupfer MI, Bouzas EA, Pikus A, Patronas N. Neurofibromatosis 2 (NF2): clinical characteristics of 63 affected individuals and clinical evidence for heterogeneity. Am J Med Genet 1994; 52 (4) 450-461
- 15 Mautner VF, Baser ME, Thakkar SD, Feigen UM, Friedman JM, Kluwe L. Vestibular schwannoma growth in patients with neurofibromatosis type 2: a longitudinal study. J Neurosurg 2002; 96 (2) 223-228
- 16 Ragge NK, Baser ME, Riccardi VM, Falk RE. The ocular presentation of neurofibromatosis 2. Eye (Lond) 1997; 11 (Pt 1): 12-18
- 17 Mautner VF, Lindenau M, Baser ME, Kluwe L, Gottschalk J. Skin abnormalities in neurofibromatosis 2. Arch Dermatol 1997; 133 (12) 1539-1543
- 18 Eldrige R, Parry DM, Kaiser-Kupfer MI. Neurofibromatosis 2 (NF2): clinical heterogeneity and natural history based on 39 individuals in 9 families and 16 sporadic cases. Am J Hum Genet 1991; 49 (Suppl): A133
- 19 Ruggieri M. The different forms of neurofibromatosis. Childs Nerv Syst 1999; 15 (6–7) 295-308
- 20 Mautner VF, Tatagiba M, Guthoff R, Samii M, Pulst SM. Neurofibromatosis 2 in the pediatric age group. Neurosurgery 1993; 33 (1) 92-96
- 21 MacCollin M, Bove C, Kluwe L, Nunes F. The natural history of neurofibromatosis 2 in 31 affected children. Ann Neurol 1996; 44: A576
- 22 MacCollin M, Mautner VF. The diagnosis and management of neurofibromatosis 2 in childhood. Semin Pediatr Neurol 1998; 5 (4) 243-252
- 23 Evans DGR, Birch JM, Ramsden RT. Paediatric presentation of type 2 neurofibromatosis. Arch Dis Child 1999; 81 (6) 496-499
- 24 Ruggieri M, Huson SM. Clinical presentations of neurofibromatosis type 2 in childhood. Eur J Paediatr Neurol 1999; 3: A66
- 25 Huson SM, Ruggieri M. The various presentations of neurofibromatosis type 2 (NF2) in childhood. J Med Genet 1999; 36 (Suppl. 01) S6926
- 26 Ruggieri M, Polizzi A, Rampello L, Raffaele R, Vecchio I, Pavone L. Neurofibromatosis type 2 (NF2) in childhood. Neurol Sci 2000; 21 (4, Suppl) 356
- 27 Nunes F, MacCollin M. Neurofibromatosis 2 in the pediatric population. J Child Neurol 2003; 18 (10) 718-724
- 28 Ruggieri M, Iannetti P, Polizzi A , et al. Earliest clinical manifestations and natural history of neurofibromatosis type 2 (NF2) in childhood: a study of 24 patients. Neuropediatrics 2005; 36 (1) 21-34
- 29 Rushing EJ, Olsen C, Mena H , et al. Central nervous system meningiomas in the first two decades of life: a clinicopathological analysis of 87 patients. J Neurosurg 2005; 103 (6, Suppl) 489-495
- 30 Bosch MM, Boltshauser E, Harpes P, Landau K. Ophthalmologic findings and long-term course in patients with neurofibromatosis type 2. Am J Ophthalmol 2006; 141 (6) 1068-1077
- 31 Pascual-Castroviejo I, Pascual-Pascual SI, Viaño J. [Neurofibromatosis type 2 (NF2). Study of 7 patients]. Neurologia 2009; 24 (7) 457-461
- 32 Matsuo M, Ohno K, Ohtsuka F. Characterization of early onset neurofibromatosis type 2. Brain Dev 2014; 36 (2) 148-152
- 33 Choi JW, Lee JY, Phi JH , et al. Clinical course of vestibular schwannoma in pediatric neurofibromatosis type 2. J Neurosurg Pediatr 2014; 13 (6) 650-657
- 34 Ruggieri M, Gabriele AL, Polizzi A , et al. Natural history of neurofibromatosis type 2 with onset before the age of 1 year. Neurogenetics 2013; 14 (2) 89-98
- 35 Ruggieri M, Praticò AD, Evans DG. Diagnosis, management, and new therapeutic options in childhood neurofibromatosis type 2 and related forms. Semin Pediatr Neurol 2015; 22 (4) 240-258
- 36 MacCollin M, Ramesh V, Jacoby LB , et al. Mutational analysis of patients with neurofibromatosis 2. Am J Hum Genet 1994; 55 (2) 314-320
- 37 Kluwe L, Mautner VF. A missense mutation in the NF2 gene results in moderate and mild clinical phenotypes of neurofibromatosis type 2. Hum Genet 1996; 97 (2) 224-227
- 38 Kluwe L, Mautner VF. Mosaicism in sporadic neurofibromatosis 2 patients. Hum Mol Genet 1998; 7 (13) 2051-2055
- 39 Evans DG, Wallace AJ, Wu CL, Trueman L, Ramsden RT, Strachan T. Somatic mosaicism: a common cause of classic disease in tumor-prone syndromes? Lessons from type 2 neurofibromatosis. Am J Hum Genet 1998; 63 (3) 727-736
- 40 Ruggieri M, Huson SM. The neurofibromatoses. An overview. Ital J Neurol Sci 1999; 20 (2) 89-108
- 41 Ruggieri M, Polizzi A. Segmental neurofibromatosis. J Neurosurg 2000; 93 (3) 530-532
- 42 Ruggieri M. Mosaic (segmental) neurofibromatosis type 1 (NF1) and type 2 (NF2): no longer neurofibromatosis type 5 (NF5). Am J Med Genet 2001; 101 (2) 178-180
- 43 Ruggieri M, Huson SM. The clinical and diagnostic implications of mosaicism in the neurofibromatoses. Neurology 2001; 56 (11) 1433-1443
- 44 Kluwe L, Mautner V, Heinrich B , et al. Molecular study of frequency of mosaicism in neurofibromatosis 2 patients with bilateral vestibular schwannomas. J Med Genet 2003; 40 (2) 109-114
- 45 Evans DG, Ramsden RT, Shenton A , et al. Mosaicism in neurofibromatosis type 2: an update of risk based on uni/bilaterality of vestibular schwannoma at presentation and sensitive mutation analysis including multiple ligation-dependent probe amplification. J Med Genet 2007; 44 (7) 424-428
- 46 Evans DG, Ramsden RT, Shenton A , et al. What are the implications in individuals with unilateral vestibular schwannoma and other neurogenic tumors?. J Neurosurg 2008; 108 (1) 92-96
- 47 Evans DG, Wallace A. An update on age related mosaic and offspring risk in neurofibromatosis 2 (NF2). J Med Genet 2009; 46 (11) 792
- 48 Evans DG, Bowers N, Huson SM, Wallace A. Mutation type and position varies between mosaic and inherited NF2 and correlates with disease severity. Clin Genet 2013; 83 (6) 594-595
- 49 Evans DG, Freeman S, Gokhale C , et al; Manchester NF2 service. Bilateral vestibular schwannomas in older patients: NF2 or chance?. J Med Genet 2015; 52 (6) 422-424
- 50 Ruggieri M, Praticò AD. Mosaic neurocutaneous disorders and their causes. Semin Pediatr Neurol 2015; 22 (4) 207-233
- 51 Niimura M. Neurofibromatosis. Rinsho Derma 1973; 15: 653-663
- 52 Jacoby LB, Jones D, Davis K , et al. Molecular analysis of the NF2 tumor-suppressor gene in schwannomatosis. Am J Hum Genet 1997; 61 (6) 1293-1302
- 53 Antinheimo J, Sankila R, Carpén O, Pukkala E, Sainio M, Jääskeläinen J. Population-based analysis of sporadic and type 2 neurofibromatosis-associated meningiomas and schwannomas. Neurology 2000; 54 (1) 71-76
- 54 MacCollin M, Chiocca EA, Evans DG , et al. Diagnostic criteria for schwannomatosis. Neurology 2005; 64 (11) 1838-1845
- 55 MacCollin M, Woodfin W, Kronn D, Short MP. Schwannomatosis: a clinical and pathologic study. Neurology 1996; 46 (4) 1072-1079
- 56 Baser ME, Friedman JM, Evans DG. Increasing the specificity of diagnostic criteria for schwannomatosis. Neurology 2006; 66 (5) 730-732
- 57 Smith MJ, Kulkarni A, Rustad C , et al. Vestibular schwannomas occur in schwannomatosis and should not be considered an exclusion criterion for clinical diagnosis. Am J Med Genet A 2012; 158A (1) 215-219
- 58 Plotkin SR, Blakeley JO, Evans DG , et al. Update from the 2011 International Schwannomatosis Workshop: From genetics to diagnostic criteria. Am J Med Genet A 2013; 161A (3) 405-416
- 59 Hulsebos TJ, Plomp AS, Wolterman RA, Robanus-Maandag EC, Baas F, Wesseling P. Germline mutation of INI1/SMARCB1 in familial schwannomatosis. Am J Hum Genet 2007; 80 (4) 805-810
- 60 Sestini R, Bacci C, Provenzano A, Genuardi M, Papi L. Evidence of a four-hit mechanism involving SMARCB1 and NF2 in schwannomatosis-associated schwannomas. Hum Mutat 2008; 29 (2) 227-231
- 61 Hadfield KD, Newman WG, Bowers NL , et al. Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis. J Med Genet 2008; 45 (6) 332-339
- 62 Piotrowski A, Xie J, Liu YF , et al. Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Nat Genet 2014; 46 (2) 182-187
- 63 Paganini I, Chang VY, Capone GL , et al. Expanding the mutational spectrum of LZTR1 in schwannomatosis. Eur J Hum Genet 2015; 23 (7) 963-968
- 64 Smith MJ, Isidor B, Beetz C , et al. Mutations in LZTR1 add to the complex heterogeneity of schwannomatosis. Neurology 2015; 84 (2) 141-147
- 65 Castellanos E, Bielsa I, Carrato C , et al; NF2 Multidisciplinary Clinics HUGTiP-ICO-IMPPC. Segmental neurofibromatosis type 2: discriminating two hit from four hit in a patient presenting multiple schwannomas confined to one limb. BMC Med Genomics 2015; 8: 2
- 66 National Institutes of Health Consensus Development Conference. Neurofibromatosis. Conference statement. Arch Neurol 1988; 45 (5) 575-578
- 67 Mulvihill JJ, Parry DM, Sherman JL, Pikus A, Kaiser-Kupfer MI, Eldridge R. NIH conference. Neurofibromatosis 1 (Recklinghausen disease) and neurofibromatosis 2 (bilateral acoustic neurofibromatosis). An update. Ann Intern Med 1990; 113 (1) 39-52
- 68 Evans DG, Huson SM, Donnai D , et al. A clinical study of type 2 neurofibromatosis. Q J Med 1992; 84 (304) 603-618
- 69 Gutmann DH, Aylsworth A, Carey JC , et al. The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 1997; 278 (1) 51-57
- 70 Baser ME, Friedman JM, Wallace AJ, Ramsden RT, Joe H, Evans DG. Evaluation of clinical diagnostic criteria for neurofibromatosis 2. Neurology 2002; 59 (11) 1759-1765
- 71 Baser ME, Friedman JM, Joe H , et al. Empirical development of improved diagnostic criteria for neurofibromatosis 2. Genet Med 2011; 13 (6) 576-581
- 72 Stivaros SM, Stemmer-Rachamimov AO, Alston R , et al. Multiple synchronous sites of origin of vestibular schwannomas in neurofibromatosis type 2. J Med Genet 2015; 52 (8) 557-562
- 73 Curto M, McClatchey AI. Nf2/merlin: a coordinator of receptor signalling and intercellular contact. Br J Cancer 2008; 98 (2) 256-262
- 74 Cheng JQ, Lee WC, Klein MA, Cheng GZ, Jhanwar SC, Testa JR. Frequent mutations of NF2 and allelic loss from chromosome band 22q12 in malignant mesothelioma: evidence for a two-hit mechanism of NF2 inactivation. Genes Chromosomes Cancer 1999; 24 (3) 238-242
- 75 Bianchi AB, Hara T, Ramesh V , et al. Mutations in transcript isoforms of the neurofibromatosis 2 gene in multiple human tumour types. Nat Genet 1994; 6 (2) 185-192
- 76 Sher I, Hanemann CO, Karplus PA, Bretscher A. The tumor suppressor merlin controls growth in its open state, and phosphorylation converts it to a less-active more-closed state. Dev Cell 2012; 22 (4) 703-705
- 77 Schroeder RD, Angelo LS, Kurzrock R. NF2/merlin in hereditary neurofibromatosis 2 versus cancer: biologic mechanisms and clinical associations. Oncotarget 2014; 5 (1) 67-77
- 78 McClatchey AI, Fehon RG. Merlin and the ERM proteins—regulators of receptor distribution and signaling at the cell cortex. Trends Cell Biol 2009; 19 (5) 198-206
- 79 Surace EI, Haipek CA, Gutmann DH. Effect of merlin phosphorylation on neurofibromatosis 2 (NF2) gene function. Oncogene 2004; 23 (2) 580-587
- 80 Lallemand D, Saint-Amaux AL, Giovannini M. Tumor-suppression functions of merlin are independent of its role as an organizer of the actin cytoskeleton in Schwann cells. J Cell Sci 2009; 122 (Pt 22): 4141-4149
- 81 Cooper J, Giancotti FG. Molecular insights into NF2/merlin tumor suppressor function. FEBS Lett 2014; 588 (16) 2743-2752
- 82 Ahronowitz I, Xin W, Kiely R, Sims K, MacCollin M, Nunes FP. Mutational spectrum of the NF2 gene: a meta-analysis of 12 years of research and diagnostic laboratory findings. Hum Mutat 2007; 28 (1) 1-12
- 83 de Vries M, van der Mey AG, Hogendoorn PC. Tumor biology of vestibular schwannoma: a review of experimental data on the determinants of tumor genesis and growth characteristics. Otol Neurotol 2015; 36 (7) 1128-1136
- 84 Li W, You L, Cooper J , et al. Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus. Cell 2010; 140 (4) 477-490
- 85 Alfthan K, Heiska L, Grönholm M, Renkema GH, Carpén O. Cyclic AMP-dependent protein kinase phosphorylates merlin at serine 518 independently of p21-activated kinase and promotes merlin-ezrin heterodimerization. J Biol Chem 2004; 279 (18) 18559-18566
- 86 Kim HA, DeClue JE, Ratner N. cAMP-dependent protein kinase A is required for Schwann cell growth: interactions between the cAMP and neuregulin/tyrosine kinase pathways. J Neurosci Res 1997; 49 (2) 236-247
- 87 Rong R, Tang X, Gutmann DH, Ye K. Neurofibromatosis 2 (NF2) tumor suppressor merlin inhibits phosphatidylinositol 3-kinase through binding to PIKE-L. Proc Natl Acad Sci U S A 2004; 101 (52) 18200-18205
- 88 Rong R, Surace EI, Haipek CA, Gutmann DH, Ye K. Serine 518 phosphorylation modulates merlin intramolecular association and binding to critical effectors important for NF2 growth suppression. Oncogene 2004; 23 (52) 8447-8454
- 89 Jin H, Sperka T, Herrlich P, Morrison H. Tumorigenic transformation by CPI-17 through inhibition of a merlin phosphatase. Nature 2006; 442 (7102) 576-579
- 90 Lallemand D, Curto M, Saotome I, Giovannini M, McClatchey AI. NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev 2003; 17 (9) 1090-1100
- 91 Yi C, Troutman S, Fera D , et al. A tight junction-associated merlin-angiomotin complex mediates merlin's regulation of mitogenic signaling and tumor suppressive functions. Cancer Cell 2011; 19 (4) 527-540
- 92 Stickney JT, Bacon WC, Rojas M, Ratner N, Ip W. Activation of the tumor suppressor merlin modulates its interaction with lipid rafts. Cancer Res 2004; 64 (8) 2717-2724
- 93 Mani T, Hennigan RF, Foster LA, Conrady DG, Herr AB, Ip W. FERM domain phosphoinositide binding targets merlin to the membrane and is essential for its growth-suppressive function. Mol Cell Biol 2011; 31 (10) 1983-1996
- 94 Brault E, Gautreau A, Lamarine M, Callebaut I, Thomas G, Goutebroze L. Normal membrane localization and actin association of the NF2 tumor suppressor protein are dependent on folding of its N-terminal domain. J Cell Sci 2001; 114 (Pt 10): 1901-1912
- 95 Hennigan RF, Moon CA, Parysek LM , et al. The NF2 tumor suppressor regulates microtubule-based vesicle trafficking via a novel Rac, MLK and p38(SAPK) pathway. Oncogene 2013; 32 (9) 1135-1143
- 96 Yu C, Zhang YL, Pan WW , et al. CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science 2013; 342 (6165) 1518-1521
- 97 Pan D. The hippo signaling pathway in development and cancer. Dev Cell 2010; 19 (4) 491-505
- 98 Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 2014; 13 (1) 63-79
- 99 Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C, Hong W. Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem 2011; 286 (9) 7018-7026
- 100 Li Y, Zhou H, Li F , et al. Angiomotin binding-induced activation of merlin/NF2 in the Hippo pathway. Cell Res 2015; 25 (7) 801-817
- 101 Selvanathan SK, Shenton A, Ferner R , et al. Further genotype—phenotype correlations in neurofibromatosis 2. Clin Genet 2010; 77 (2) 163-170
- 102 Smith MJ, Higgs JE, Bowers NL , et al. Cranial meningiomas in 411 neurofibromatosis type 2 (NF2) patients with proven gene mutations: clear positional effect of mutations, but absence of female severity effect on age at onset. J Med Genet 2011; 48 (4) 261-265
- 103 Evans DG, Trueman L, Wallace A, Collins S, Strachan T. Genotype/phenotype correlations in type 2 neurofibromatosis (NF2): evidence for more severe disease associated with truncating mutations. J Med Genet 1998; 35 (6) 450-455
- 104 Baser ME, Kuramoto L, Woods R , et al. The location of constitutional neurofibromatosis 2 (NF2) splice site mutations is associated with the severity of NF2. J Med Genet 2005; 42 (7) 540-546
- 105 Hexter A, Jones A, Joe H , et al; English Specialist NF2 Research Group. Clinical and molecular predictors of mortality in neurofibromatosis 2: a UK national analysis of 1192 patients. J Med Genet 2015; 52 (10) 699-705
- 106 Baser ME, Friedman JM, Aeschliman D , et al. Predictors of the risk of mortality in neurofibromatosis 2. Am J Hum Genet 2002; 71 (4) 715-723
- 107 van den Munckhof P, Christiaans I, Kenter SB, Baas F, Hulsebos TJ. Germline SMARCB1 mutation predisposes to multiple meningiomas and schwannomas with preferential location of cranial meningiomas at the falx cerebri. Neurogenetics 2012; 13: 1-7
- 108 Hadfield KD, Smith MJ, Trump D, Newman WG, Evans DG. SMARCB1 mutations are not a common cause of multiple meningiomas. J Med Genet 2010; 47: 567-568
- 109 Gutmann DH, Blakeley JO, Korf BR, Packer RJ. Optimizing biologically targeted clinical trials for neurofibromatosis. Expert Opin Investig Drugs 2013; 22 (4) 443-462
- 110 Lim SH, Ardern-Holmes S, McCowage G, de Souza P. Systemic therapy in neurofibromatosis type 2. Cancer Treat Rev 2014; 40 (7) 857-861
- 111 Karajannis MA, Legault G, Hagiwara M , et al. Phase II trial of lapatinib in adult and pediatric patients with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro-oncol 2012; 14 (9) 1163-1170
- 112 Plotkin SR, Halpin C, McKenna MJ, Loeffler JS, Batchelor TT, Barker II FG. Erlotinib for progressive vestibular schwannoma in neurofibromatosis 2 patients. Otol Neurotol 2010; 31 (7) 1135-1143
- 113 Karajannis MA, Legault G, Hagiwara M , et al. Phase II study of everolimus in children and adults with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro-oncol 2014; 16 (2) 292-297
- 114 Ammoun S, Hanemann CO. Emerging therapeutic targets in schwannomas and other merlin-deficient tumors. Nat Rev Neurol 2011; 7 (7) 392-399
- 115 Lee TX, Packer MD, Huang J , et al. Growth inhibitory and anti-tumour activities of OSU-03012, a novel PDK-1 inhibitor, on vestibular schwannoma and malignant schwannoma cells. Eur J Cancer 2009; 45 (9) 1709-1720
- 116 Ammoun S, Schmid MC, Triner J, Manley P, Hanemann CO. Nilotinib alone or in combination with selumetinib is a drug candidate for neurofibromatosis type 2. Neuro-oncol 2011; 13 (7) 759-766
- 117 Mukherjee J, Kamnasaran D, Balasubramaniam A , et al. Human schwannomas express activated platelet-derived growth factor receptors and c-kit and are growth inhibited by Gleevec (Imatinib Mesylate). Cancer Res 2009; 69 (12) 5099-5107
- 118 Lim S, de Souza P. Imatinib in neurofibromatosis type 2. BMJ Case Rep 2013; ; doi: 10.1136/bcr-2013-010274
- 119 Subbiah V, Slopis J, Hong DS , et al. Treatment of patients with advanced neurofibromatosis type 2 with novel molecularly targeted therapies: from bench to bedside. J Clin Oncol 2012; 30 (5) e64-e68
- 120 Plotkin SR, Stemmer-Rachamimov AO, Barker II FG , et al. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N Engl J Med 2009; 361 (4) 358-367
- 121 Kamba T, McDonald DM. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer 2007; 96 (12) 1788-1795
- 122 Morris KA, Golding JF, Axon PR, Afridi S, Blesing C, Ferner RE, , et al; the UK NF2 Research group, Evans DG, McCabe MG, Parry A. Bevacizumab in Neurofibromatosis type 2 (NF2) related vestibular schwannomas: a nationally coordinated approach to delivery and prospective evaluation. Neuro-Oncology Practice 2016; ;0, 1–9, doi:10.1093/nop/npv06 [epub ahead of print]
- 123 Plotkin SR, Merker VL, Halpin C , et al. Bevacizumab for progressive vestibular schwannoma in neurofibromatosis type 2: a retrospective review of 31 patients. Otol Neurotol 2012; 33 (6) 1046-1052
- 124 Nunes FP, Merker VL, Jennings D , et al. Bevacizumab treatment for meningiomas in NF2: a retrospective analysis of 15 patients. PLoS ONE 2013; 8 (3) e59941
- 125 Hawasli AH, Rubin JB, Tran DD , et al. Antiangiogenic agents for nonmalignant brain tumors. J Neurol Surg B Skull Base 2013; 74 (3) 136-141
- 126 Alanin MC, Klausen C, Caye-Thomasen P , et al. The effect of bevacizumab on vestibular schwannoma tumour size and hearing in patients with neurofibromatosis type 2. Eur Arch Otorhinolaryngol 2015; 272 (12) 3627-3633
- 127 Hochart A, Gaillard V, Baroncini M , et al. Bevacizumab decreases vestibular schwannomas growth rate in children and teenagers with neurofibromatosis type 2. J Neurooncol 2015; 124 (2) 229-236
- 128 Farschtschi S, Kollmann P, Dalchow C, Stein A, Mautner VF. Reduced dosage of bevacizumab in treatment of vestibular schwannomas in patients with neurofibromatosis type 2. Eur Arch Otorhinolaryngol 2015; 272 (12) 3857-3860
- 129 Mautner VF, Nguyen R, Kutta H , et al. Bevacizumab induces regression of vestibular schwannomas in patients with neurofibromatosis type 2. Neuro-oncol 2010; 12 (1) 14-18
- 130 Eminowicz GK, Raman R, Conibear J, Plowman PN. Bevacizumab treatment for vestibular schwannomas in neurofibromatosis type two: report of two cases, including responses after prior gamma knife and vascular endothelial growth factor inhibition therapy. J Laryngol Otol 2012; 126 (1) 79-82
- 131 Riina HA, Burkhardt JK, Santillan A, Bassani L, Patsalides A, Boockvar JA. Short-term clinico-radiographic response to super-selective intra-arterial cerebral infusion of Bevacizumab for the treatment of vestibular schwannomas in Neurofibromatosis type 2. Interv Neuroradiol 2012; 18 (2) 127-132