Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(11): 2501-2512
DOI: 10.1055/s-0036-1588147
DOI: 10.1055/s-0036-1588147
paper
An Improved Environmentally Friendly Approach to 4-Nitro-, 4-Sulfonyl-, and 4-Aminoquinolines and 4-Quinolones through Conjugate Addition of Nucleophiles to β-(2-Aminophenyl)-α,β-ynones
Further Information
Publication History
Received: 13 January 2017
Accepted after revision: 27 January 2017
Publication Date:
22 February 2017 (online)

Abstract
Sequential addition/annulation reactions of sulfinate and nitrite anions to β-(2-aminophenyl)-α,β-ynones led to valuable 4-sulfonylquinolines and 4-nitroquinolines. The latter proved to be versatile precursors of N-unsubstituted 4-aminoquinolines and 4-quinolones. Reaction of β-(2-aminophenyl)-α,β-ynones with DMF/NaOH resulted in the formation of 4-(dimethylamino)quinolines. The use of an alternative CO-free procedure for the preparation of substrates β-(2-aminophenyl)-α,β-ynones allowed extension of the methodology to the synthesis of 4-substituted 2-alkylquinolines.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588147.
- Supporting Information
-
References
- 1a Jones RA, McAteer CH, Balasubramanian M, Murugan R. In Comprehensive Heterocyclic Chemistry III . 1st ed., Vol. 7; Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008: 309
- 1b Eicher T, Hauptmann S, Speicher A. In The Chemistry of Heterocycles . 2nd ed., Vol. 6.16 Wiley-VCH; Weinheim: 2003: 316
- 1c Boratyński PJ. Mol. Diversity 2015; 19: 385-385
- 2 Jones RA, Panda SS, Hall CD. Eur. J. Med. Chem. 2015; 97: 335-335
- 3 Afzal A, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S. Eur. J. Med. Chem. 2015; 97: 871-871
- 4a Kumar V, Gohain M, Van Tonder JH, Ponra S, Bezuindenhoudt BC. B, Ntwaeaborwa OM, Swart HC. Opt. Mater. 2015; 50: 275-275
- 4b Ejuh GW, Samuel N, Fridolin TN, Ndjaka JM. Mater. Lett. 2016; 178: 221-221
- 4c Ren BY, Zhong D.-K, Sun Y.-G, Zhao X.-H, Zhang Q.-J, Liu Y, Jurow M, Sun M.-L, Zhang Z.-S, Zhao Y. Org. Electron. 2016; 36: 140-140
- 4d Driscoll EW, Hunt JR, Dawlaty JM. J. Phys. Chem. Lett. 2016; 7: 2093-2093
- 4e Mao M, Zhang X, Zhu B, Wang J, Wu G, Yin Y, Song Q. Dyes Pigm. 2016; 124: 72-72
- 4f Chen C.-H, Hsu L.-C, Rajamalli P, Chang Y.-W, Wu F.-I, Liao C.-Y, Chiu M.-J, Chou P.-Y, Huang M.-J, Chu L.-K, Cheng C.-H. J. Mater. Chem. C 2014; 2: 6183-6183
- 5 Abbiati G, Arcadi A, Marinelli F, Rossi E. Synthesis 2014; 46: 687-687
- 6a Abbiati G, Arcadi A, Marinelli F, Rossi E, Verdecchia M. Synlett 2006; 3218-3218
- 6b Arcadi A, Aschi M, Marinelli F, Verdecchia M. Tetrahedron 2008; 64: 5354-5354
- 7a Abbiati G, Arcadi A, Marinelli F, Rossi E. Eur. J. Org. Chem. 2003; 1423-1423
- 7b Abbiati G, Arcadi A, Marinelli F, Rossi E, Verdecchia M. Eur. J. Org. Chem. 2009; 1027-1027
- 8a Arcadi A, Marinelli F, Rossi E. Tetrahedron 1999; 55: 13233-13233
- 8b Rossi E, Abbiati G, Canevari V, Nava D, Arcadi A. Tetrahedron 2004; 60: 11391-11391
- 8c Arcadi A, Inesi A, Marinelli F, Rossi L, Verdecchia M. Eur. J. Org. Chem. 2007; 2430-2430
- 9 Chiarini M, Del Vecchio L, Marinelli F, Rossi L, Arcadi A. Synthesis 2016; 48: 3017-3017
- 10a Morita S, Otsubo K, Matsubara J, Ohtani T, Uchida M. Tetrahedron: Asymmetry 1995; 6: 245-245
- 10b Ishida T, Kikuchi S, Yamada T. Org. Lett. 2013; 15: 3710-3710
- 11 Yakovleva EA, Ivanchikova ID, Shvartsberg MS. Russ. Chem. Bull., Int. Ed. 2005; 54: 421-421
- 12a Gangadharmath UB, Kolb HC, Scott PJ. H, Walsh JC, Zhang W, Szardenings AK, Sinha A, Chen G, Wang E, Mocharia VP, Yu C, Liu Ch, Cashion DK, Kasi D. US 2010239496, 2010
- 12b Cashion DK, Chen G, Kasi D, Kolb C, Liu C, Sinha A, Szardenings AK, Wang E, Yu C, Zhang W, Gangadharmath UB, Walsh JC. CN 102985411, 2016
- 13 Kuninobu Y, Nagase M, Kanai M. Angew. Chem. Int. Ed. 2015; 54: 10263-10263
- 14 Heitman LH, Göblyös A, Zweemer AM, Bakker R, Mulder-Krieger T, van Veldhoven JP. D, de Vries H, Brussee J, IJzerman AP. J. Med. Chem. 2009; 52: 926-926
- 15 Zhou Y, Li J, Liu H, Zhaob L, Jiang H. Tetrahedron Lett. 2006; 47: 8511-8511
- 16 Delfourne E, Darro F, Bontemps-Subielos N, Decaestecker C, Bastide J, Frydman A, Kiss R. J. Med. Chem. 2001; 44: 3275-3275
- 17 Ivachtchenko AV, Mitkin OD, Kadieva MG. US 2013267536, 2013
- 18 Barlin GB, Brown WV. J. Chem. Soc. B 1967; 736-736
- 19 Wei X, Shu C, Haddad N, Zeng X, Patel ND, Tan Z, Liu J, Lee H, Shen S, Campbell S, Varsolona RJ, Busacca CA, Hossain A, Yee NK, Senanayake CH. Org. Lett. 2013; 15: 1016-1016
- 20a Wròbel Z. Tetrahedron 1998; 54: 2607-2607
- 20b Wròbel Z. Eur. J. Org. Chem. 2000; 521-521
- 20c Anczkiewicz K, Królikiewicz M, Wròbel Z, Wojciechowski K. Tetrahedron 2015; 71: 3924-3924
- 21 Nowacki M, Wojciechowski K. RSC Adv. 2015; 5: 94296-94296
- 22 Tripathi RC, Saxena M, Chandra S, Saxena AK. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1995; 34: 164-164
- 23a Miyakoshi T, Saito S, Kumanotani J. Chem. Lett. 1981; 10: 1677-1677
- 23b Gabrielli S, Palmieri A, Perosa A, Selva M, Ballini R. Green Chem. 2011; 13: 2026-2026
- 24 Arcadi A, Chiarini M, Marinelli F, Picchini S. Synthesis 2011; 4084-4084
- 25 Belzner J, Schär D, Herbst-Irmer R, Kneisel B, Noltemeyer M. Tetrahedron 1998; 54: 8481-8481
- 26 For the use of DMF as nucleophile see: Tsai J.-Y, Chang C.-S, Huang Y.-F, Chen H.-S, Lin S.-K, Wong FF, Huang L.-J, Kuo S.-C. Tetrahedron 2008; 64: 11751-11751
- 27 Torii S, Okumoto H, Xu LH, Sadakane M, Shostakovsky MV, Ponomaryov AB, Kalinin VN. Tetrahedron 1993; 49: 6773-6773
- 28a Rocha DH. A, Pinto DC. G. A, Silva AM. S. Tetrahedron 2015; 71: 7717-7717
- 28b Marques EF, Bueno MA, Duarte PD, Silva LR. S. P, Martinelli AM, dos Santos CY, Severino RP, Brömme D, Vieira PC, Corrêa AG. Eur. J. Med. Chem. 2012; 54: 10-10
- 28c Sun F, Zhao X, Shi D. Tetrahedron Lett. 2011; 52: 5633-5633
- 28d Jones CP, Anderson KW, Buchwald SL. J. Org. Chem. 2007; 72: 7968-7968
- 29 For the use of 4-aminoquinoline as synthetic intermediates see, for example: Kakadiya R, Dong H, Kumar H, Narsinh D, Zhang X, Chou T.-C, Lee T.-C, Shah A, Su T.-L. Bioorg. Med. Chem. 2010; 18: 2285-2285
- 30 Cheng L.-J, Cordier CJ. Angew. Chem. Int. Ed. 2015; 54: 13734-13734
- 31 Pfaendler HR, Maier FK, Klar S. J. Am. Chem. Soc. 1986; 108: 1338-1338
- 32 Ferreira DS. P, Ferreira JG, Filho EF. S, Princival JL. J. Mol. Catal. B: Enzym. 2016; 126: 37-37
- 33 Kazmaier U, Lucas S, Klein M. J. Org. Chem. 2006; 71: 2429-2429
- 34 Brown RF. C, Coulston KJ, Eastwood FW, Jurss CJ. Aust. J. Chem. 1994; 47: 567-567
- 35 Coffman KC, Palazzo TA, Hartley TP, Fettinger JC, Tantillo DJ, Kurth MJ. Org. Lett. 2013; 15: 2062-2062
- 36 A similar yield (45%) was obtained using 20 equiv of MnO2 in acetone at r.t., according to: Jeong Y, Kim B.-I, Lee JK, Ryu J.-S. J. Org. Chem. 2014; 79: 6444-6444
Selected current references:
Rh- and Pd-catalyzed hydroarylation:
Cycloaddition:
For conjugate addition of NO2 to enones see: