RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2017; 49(01): 121-126
DOI: 10.1055/s-0036-1588336
DOI: 10.1055/s-0036-1588336
paper
Preparation of 4,6-Disubstituted α-Pyrones by Oxidative N-Heterocyclic Carbene Catalysis
Weitere Informationen
Publikationsverlauf
Received: 26. Juli 2016
Accepted after revision: 28. September 2016
Publikationsdatum:
13. Oktober 2016 (online)

Dedicated to Prof. Dieter Enders, a pioneer and driving force in carbene catalysis, on the occasion of his 70th birthday
Abstract
An efficient synthesis of 4,6-disubstituted α-pyrones employing redox activation of enals using N-heterocyclic carbene catalysis is reported. The strategy uses aroyl-substituted nitromethanes and enals as substrates and reactions proceed through an addition–elimination–lactonization sequence. On one hand the nitro group in the starting ketone stabilizes the enolate and on the other hand it also acts as an ionic leaving group. Products are obtained in moderate to good yields.
Key words
α-pyrone - N-heterocyclic carbine - oxidative organocatalysis - NHC catalysis - elimination - lactonizationSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588336.
- Supporting Information
-
References
- 1a Dickinson JM. Nat. Prod. Rep. 1993; 10: 71
- 1b McGlacken GP, Fairlamb IJ. S. Nat. Prod. Rep. 2005; 22: 369
- 2a Barrero AF, Oltra JE, Herrador MM, Sanchez JF, Quilez JF, Rojas FJ, Reyes JF. Tetrahedron 1993; 49: 141
- 2b Evidente A, Cabras A, Maddau L, Serra S, Andolfi A, Motta A. J. Agric. Food Chem. 2003; 51: 6957
- 2c Claydon N, Asllan M, Hanson JR, Avent AG. Trans. Br. Mycol. Soc. 1987; 88: 503
- 2d Vara Prasad JV. N, Para KS, Lunney EA, Ortwine DF, Dunbar JB, Ferguson D, Tummino PJ, Hupe D, Tait BD, Domagala JM, Humblet C, Bhat TN, Liu B, Guerin DA. M, Baldwin ET, Erickson JW, Sawyer TK. J. Am. Chem. Soc. 1994; 116: 6989
- 2e Sato H, Konoma K, Sakamura S. Agric. Biol. Chem. 1981; 45: 1675
- 3a Goel A, Ram VJ. Tetrahedron 2009; 65: 7865
- 3b Shin I.-J, Choi E.-S, Cho C.-G. Angew. Chem. Int. Ed. 2007; 46: 2303
- 3c Jung Y.-G, Lee S.-C, Cho H.-K, Darvatkar NB, Song J.-Y, Cho C.-G. Org. Lett. 2013; 15: 132
- 3d Cho H.-K, Lim H.-Y, Cho C.-G. Org. Lett. 2013; 15: 5806
- 3e Sun C.-L, Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 13071
- 4a Smith NR, Wiley RH. Org. Synth. 1952; 32: 76
- 4b Yao T, Larock RC. J. Org. Chem. 2003; 68: 5936
- 4c Bengtsson C, Almqvist FA. J. Org. Chem. 2011; 76: 9817
- 4d Luo T, Schreiber SL. Angew. Chem. Int. Ed. 2007; 46: 8250
- 4e Manikandan R, Jeganmohan M. Org. Lett. 2014; 16: 652
- 5a Enders D, Grondal C, Huttl MR. Angew. Chem. Int. Ed. 2007; 46: 1570
- 5b Walji AM, MacMillan DW. C. Synlett 2007; 1477
- 5c Yu X, Wang W. Org. Biomol. Chem. 2008; 6: 2037
- 5d Zhou J. Chem. Asian J. 2010; 5: 422
- 5e Grossmann A, Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
- 6a Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
- 6b Marion N, Diez-Gonzalez S, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 2988
- 6c Nair V, Vellalath S, Babu BP. Chem. Soc. Rev. 2008; 37: 2691
- 6d Moore JL, Rovis T. Top. Curr. Chem. 2010; 291: 77
- 6e Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Sreekumar V. Chem. Soc. Rev. 2011; 40: 5336
- 6f Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
- 6g Douglas J, Churchill G, Smith AD. Synthesis 2012; 44: 2295
- 6h Vora HU, Wheeler P, Rovis T. Adv. Synth. Catal. 2012; 354: 1617
- 6i Mahatthananchai J, Bode JW. Acc. Chem. Res. 2014; 47: 696
- 6j Hopkinson MN, Richter C, Schedler M, Glorius F. Nature (London) 2014; 510: 485
- 6k Yetra SR, Patra A, Biju AT. Synthesis 2015; 47: 1357
- 6l Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
- 6m Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
- 7a Knappke CE. I, Imami A, von Wangelin AJ. ChemCatChem 2012; 4: 937
- 7b De Sarkar S, Biswas A, Samanta RC, Studer A. Chem. Eur. J. 2013; 19: 4664
- 7c Albanese DC. M, Gaggero N. Eur. J. Org. Chem. 2014; 5631
- 8a De Sarkar S, Studer A. Angew. Chem. Int. Ed. 2010; 49: 9266
- 8b Mahatthananchai J, Zheng P, Bode JW. Angew. Chem. Int. Ed. 2011; 50: 1673
- 8c Ryan SJ, Candish L, Lupton D. J. Am. Chem. Soc. 2009; 131: 14176
- 8d Kravina AG, Mahatthananchai J, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 9433
- 8e Biswas A, De Sarkar S, Tebben L, Studer A. Chem. Commun. 2012; 48: 5190
- 8f Samanta RC, Maji B, De Sarkar S, Bergander K, Fröhlich R, Mück-Lichtenfeld C, Mayr H, Studer A. Angew. Chem. Int. Ed. 2012; 51: 5234
- 8g Candish L, Lupton DW. J. Am. Chem. Soc. 2013; 135: 58
- 8h Yetra SR, Kaicharla T, Kunte SS, Gonnade RG, Biju AT. Org. Lett. 2013; 15: 5202
- 8i Cheng J, Huang Z, Chi YR. Angew. Chem. Int. Ed. 2013; 52: 8592
- 8j Mo J, Shen L, Chi YR. Angew. Chem. Int. Ed. 2013; 52: 8588
- 8k Bera S, Samanta RC, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2014; 53: 9622
- 8l Mondal S, Yetra SR, Patra A, Kunte SS, Gonnade RG, Biju AT. Chem. Commun. 2014; 50: 14539
- 8m Yetra SR, Mondal S, Mukherjee S, Suresh E, Biju AT. Org. Lett. 2015; 17: 1417
- 8n Bera S, Daniliuc CG, Studer A. Org. Lett. 2015; 17: 4940
- 8o Liang Z.-Q, Wang D.-L, Zhang H.-M, Ye S. Org. Lett. 2015; 17: 5140
- 8p Yetra SR, Mondal S, Mukherjee S, Gonnade RG, Biju AT. Angew. Chem. Int. Ed. 2016; 55: 268
- 9 Yeh P.-P, Daniels DS. B, Slawin AM. Z, Smith AD. Org. Lett. 2014; 16: 964
- 10 Zhu X.-F, Schaffner A.-P, Li RC, Kwon O. Org. Lett. 2005; 7: 2977
- 11a De Sarkar S, Grimme S, Studer A. J. Am. Chem. Soc. 2010; 132: 1190
- 11b De Sarkar S, Studer A. Org. Lett. 2010; 12: 1992
- 12a Ling KB, Smith AD. Chem. Commun. 2011; 47: 373
- 12b Kerr MS, Read de Alaniz JR, Rovis T. J. Org. Chem. 2005; 70: 5725
- 12c Schedler M, Fröhlich R, Daniliuc CG, Glorius F. Eur. J. Org. Chem. 2012; 4164
- 13 It is also possible that the intermediate 6 may undergo intramolecular proton transfer to give a ketone enolate which then lactonizes to the corresponding dihydropyranone. Subsequent double bond isomerization and HNO2 elimination will afford α-pyrone 4 (Scheme 4). We thank a reviewer for this valuable suggestion.
For reviews of α-pyrones, see:
For the biological activities of α-pyrones, see:
For reactivity of α-pyrones, see:
For the synthesis of α-pyrones, see:
For selected reviews on organocatalytic cascade reactions, see:
For reviews on NHC catalysis, see:
For recent reviews, see:
For selected recent reports on NHC-catalyzed generation of α,β-unsaturated acyl azoliums and their reactions, see:
For the synthesis of NHC precatalysts, see: