Subscribe to RSS
DOI: 10.1055/s-0036-1588438
C4 Pictet–Spengler Reactions for the Synthesis of Core Structures in Hyrtiazepine Alkaloids
Publication History
Received: 10 March 2017
Accepted after revision: 04 May 2017
Publication Date:
07 June 2017 (online)
Published as part of the Special Topic Modern Cyclization Strategies in Synthesis
Abstract
The hyrtiazepine alkaloids are a family of bisindole natural products that have the azepinoindole backbone. We developed a biomimetic approach by constructing the azepinoindole core in a one-pot manner through 1,4-diazabicyclo[2.2.2]octane/2,2,2-trifluoroethanol (DABCO/TFE) promoted Pictet–Spengler reaction onto the C-4 position of tryptophan. This strategy allowed the synthesis of common key structures of these families. The key intermediate can be converted into the 3H-pyrano[2,3-b:5,6-e′]diindol intermediate present in hyrtimomines A and B, as well as the azepinoindole core present in fargesine.
Key words
Pictet–Spengler reaction - indole alkaloids - azepinoindoles - biomimetic synthesis - cyclizations - stereoselectivitiesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588438.
- Supporting Information
-
References
- 1 Sauleau P. Martin M.-T. Dau M.-ET. H. Youssef DT. A. Bourguet-Kondracki M.-L. J. Nat. Prod. 2006; 69: 1676
- 2a Momose R. Tanaka N. Fromont J. Kobayashi J. Org. Lett. 2013; 15: 2010
- 2b Tanaka N. Momose R. Takahashi-Nakaguchi A. Gonoi T. Fromont J. Kobayashi J. Tetrahedron 2014; 70: 832
- 3 Kubota T. Nakamura K. Sakai K. Fromont J. Gonoi T. Kobayashi J. Chem. Pharm. Bull. 2016; 64: 975
- 4a Xu Q.-L. Dai L.-X. You S.-L. Chem. Sci. 2013; 4: 97
- 4b Jiang B. Ye Q. Fan W. Wang S.-L. Tu S.-J. Li G. Chem. Commun. 2014; 6108
- 4c Bartoccini F. Bartolucci S. Mari M. Piersanti G. Org. Biomol. Chem. 2016; 14: 10095
- 5 Ito F. Shudo K. Yamaguchi K. Tetrahedron 2011; 67: 1805
- 6a Yamada K. Namerikawa Y. Abe T. Ishikura M. Heterocycles 2009; 77: 825
- 6b Yamada K. Yamaguchi S. Hatae N. Abe T. Iwamura T. Ishikura M. Heterocycles 2011; 83: 815
- 7 Yamada K. Namerikawa Y. Haruyama T. Miwa Y. Yanada R. Ishikura M. Eur. J. Org. Chem. 2009; 5752
- 8 Abe T. Yamada K. J. Nat. Prod. 2017; 80: 241
- 9a Abe T. Ikeda T. Yanada R. Ishikura M. Org. Lett. 2011; 13: 3356
- 9b Abe T. Ikeda T. Yanada R. Ishikura M. Eur. J. Org. Chem. 2012; 5018
- 9c Abe T. Komatsu H. Ikeda T. Hatae N. Toyota E. Ishikura M. Heterocycles 2012; 86: 505
- 9d Abe T. Ikeda T. Yanada R. Ishikura M. Org. Lett. 2013; 15: 3622.
- 9e Abe T. Ikeda T. Itoh T. Hatae N. Toyota E. Ishikura M. Heterocycles 2014; 88: 187
- 9f Abe T. Itoh T. Hibino S. Choshi T. Ishikura M. Tetrahedron Lett. 2014; 55: 5268
- 9g Itoh T. Abe T. Nakamura S. Ishikura M. Heterocycles 2015; 91: 1423
- 9h Abe T. Ishikura M. Heterocycles 2015; 90: 673
- 9i Itoh T. Abe T. Choshi T. Nishiyama T. Yanada R. Ishikura M. Eur. J. Org. Chem. 2016; 2290
- 9j Itoh T. Abe T. Choshi T. Nishiyama T. Ishikura M. Heterocycles 2016; 92: 1132
- 9k Abe T. Yamada K. Org. Lett. 2016; 18: 6504
- 9l Itoh T. Abe T. Choshi T. Nishiyama T. Ishikura M. Heterocycles 2017; 95: 507
- 9m Abe T. Kida K. Yamada K. Chem. Commun. 2017; 4362
- 10 Isaacs NS. Coulson M. J. Phys. Org. Chem. 1996; 9: 639
- 11 Pasquini S. Mugnaini C. Brizzi A. Ligresti A. Di Marzo V. Ghiron C. Corelli F. J. Comb. Chem. 2009; 11: 795
- 12 Vilsmeier A. Haack A. Ber. Dtsch. Chem. Ges. 1927; 60: 119
- 13a Aoki K. Koseki J. Takeda S. Aburada M. Miyamoto K. Chem. Pharm. Bull. 2007; 55: 922
- 13b Shao C. Shi G. Zhang Y. Pan S. Guan X. Org. Lett. 2015; 17: 2652
- 14 Scicinski JJ. Congreve MS. Ley SV. J. Comb. Chem. 2004; 6: 375
- 15 Kang I.-J. Wang L.-W. Hsu S.-J. Lee C.-C. Lee Y.-C. Wu Y.-S. Hsu T.-A. Yueh A. Chao Y.-S. Chern J.-H. Bioorg. Med. Chem. Lett. 2009; 19: 4134
- 17a He Y. Zhao N. Qju L. Zhang X. Fan X. Org. Lett. 2016; 18: 6054
- 17b Colomer I. Barcelos RC. Christensen KE. Donohoe TJ. Org. Lett. 2016; 18: 5880
- 17c Dwight SJ. Levin S. Org. Lett. 2016; 18: 5316
- 17d Eberson L. Hartshorn MP. Persson O. Radner F. Chem. Commun. 1996; 2105
- 18a Bonnet-Delpon D. Bégué J.-P. Crousse B. Synlett 2004; 18
- 18b Börner A. Shuklov I. Dubrovina N. Synthesis 2007; 2925
- 18c Khaksar S. J. Fluorine Chem. 2015; 172: 51
- 19 Bentley TW. Llewellyn G. Prog. Phys. Org. Chem. 1990; 17: 121
- 20 Berkessel A. Adrio JA. Hüttenhain D. Neudörfl JM. J. Am. Chem. Soc. 2006; 128: 8421
- 21 Minegishi S. Kobayashi S. Mayr H. J. Am. Chem. Soc. 2004; 126: 5174
- 22a Ku J.-M. Jeong B.-S. Jew S.-S. Park H.-G. J. Org. Chem. 2007; 72: 8115
- 22b Xu Z. Li Q. Zhang L. Jia Y. J. Org. Chem. 2009; 74: 6859
- 22c Liu Q. Li Q. Ma Y. Jia Y. Org. Lett. 2013; 15: 4528
- 22d Xu Z. Hu W. Liu Q. Zhang L. Jia Y. J. Org. Chem. 2010; 75: 7626
- 22e For a review, see: Ito M. Tahara Y. Shibata T. Chem. Eur. J. 2016; 22: 1
- 23 Bartoccini F. Casoli M. Mari M. Piersanti G. J. Org. Chem. 2014; 79: 3255
- 24 Nyasse B. Grehn L. Ragnarsson U. Chem. Commun. 1997; 1017
- 25a Zhao J.-C. Yu S.-M. Liu Y. Yao Z.-J. Org. Lett. 2013; 15: 4300
- 25b Nicolaou KC. Chen DY.-K. Huang X. Ling T. Bella M. Snyder SA. J. Am. Chem. Soc. 2004; 126: 12888
- 25c Knowles RR. Carpenter J. Blakey SB. Kayano A. Mangion IK. Sinz CJ. MacMillan DW. C. Chem. Sci. 2011; 2: 308
- 26a Qu S.-J. Liu Q.-W. Tan C.-H. Jiang S.-H. Zhu D.-Y. Planta Med. 2006; 72: 264
- 26b Shan D. Gao Y. Jia Y. Angew. Chem. Int. Ed. 2013; 52: 4902
- 26c Tanaka Y. Suzuki Y. Hamada Y. Nemoto T. Heterocycles 2017; 95: 243
- 27a NiKolic D. Gödecke T. Chen S.-N. White J. Lankin DC. Pauli GF. van Breemen RB. Fitoterapia 2012; 83: 441
- 27b Söderberg BC. G. Tetrahedron Lett. 2016; 57: 3873
- 28 Wendlandt AE. Stahl SS. J. Am. Chem. Soc. 2014; 136: 506
For selected examples of TFE-promoted transformations, see: