Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(18): 4205-4212
DOI: 10.1055/s-0036-1588472
DOI: 10.1055/s-0036-1588472
special topic
Iron-Catalyzed Intramolecular Alkyne–Carbonyl Metathesis: A New Cyclization Strategy for the Synthesis of Benzocarbazole and Azepino[1,2-a]indole Derivatives
Further Information
Publication History
Received: 19 April 2017
Accepted after revision: 29 May 2017
Publication Date:
20 July 2017 (online)
Published as part of the Special Topic Modern Cyclization Strategies in Synthesis
Abstract
An efficient synthesis of benzocarbazoles and benzo[3,4]azepino[1,2-a]indole derivatives through an FeCl3-catalyzed alkyne–aldehyde metathesis reaction is described. Structurally diverse benzo[a]carbazoles, benzo[c]carbazoles, and benzo[3,4]azepino[1,2-a]indoles have been achieved in good yields with high regio- and chemoselectivity in the presence of catalytic, inexpensive, and environmentally friendly FeCl3 as a catalyst.
Key words
cyclization - fused-ring systems - homogeneous catalysis - indoles - iron - Lewis acids - aldehydes - alkynesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588472.
- Supporting Information
-
References
- 1a Pindur U. Lemster T. Recent Res. Dev. Org. Bioorg. Chem. 1997; 1: 33
- 1b Kirsch GH. Curr. Org. Chem. 2001; 5: 507
- 1c Knölker H.-J. Reddy KR. Chem. Rev. 2002; 102: 4303
- 1d Agarwal S. Cömmerer S. Filali S. Fröhner W. Knöll J. Krahl MP. Reddy KR. Knölker H.-J. Curr. Org. Chem. 2005; 9: 1601
- 1e Bellina F. Rossi R. Tetrahedron 2006; 62: 7213
- 1f Prudhomme M. Curr. Pharm. Des. 1997; 3: 265
- 1g Pindur U. Kim Y.-S. Mehrabani F. Curr. Med. Chem. 1999; 6: 29
- 1h Prudhomme M. Eur. J. Med. Chem. 2003; 38: 123
- 1i Roy JA. Jana K. Mal D. Tetrahedron 2012; 68: 6099
- 1j Bauer I. Knölker H.-J. Top. Curr. Chem. 2012; 309: 203
- 1k Schmidt AW. Reddy KR. Knölker H.-J. Chem. Rev. 2012; 112: 3193
- 2a Aleksandrova EL. Semiconductors 2004; 38: 1115
- 2b Moon IK. Oh J.-W. Kim N. J. Photochem. Photobiol., A 2008; 194: 351
- 2c Raju MV. N. Mohanty ME. Bangal PR. Vaidya JR. J. Phys. Chem. C 2015; 119: 8563
- 2d Paramasivam M. Chitumalla RK. Singh SP. Islam A. Han L. Rao VJ. Bhanuprakash K. J. Phys. Chem. C 2015; 119: 17053
- 2e Oliveira MM. Salvador MA. Coelho PJ. Carvalho LM. Tetrahedron 2005; 61: 1681
- 2f Chen JP. Tanabe H. Li X.-C. Thoms T. Okamura Y. Ueno K. Synth. Met. 2003; 132: 173
- 2g You J. Zhao W. Liu L. Zhao X. Suo Y. Wang H. Li Y. Ding C. Talanta 2007; 72: 914
- 3a Wang Y.-Q. Li X.-H. He Q. Chen Y. Xie Y.-Y. Ding J. Miao Z.-H. Yang C.-H. Eur. J. Med. Chem. 2011; 46: 5878
- 3b Radice M. Segall A. Rodero L. Hochenfellner F. Pizzorno MT. Moretton J. Garrido D. Gutkind G. Pharmazie 2000; 55: 151
- 3c Beight DW. Kinnick MD. Lin H. Morin JM. Richett ME. Sall DJ. Sayer JS. WO 2002050034, 2002 ; Chem. Abstr. 2002, 137, 47114
- 3d Angerer EV. Prekajac J. J. Med. Chem. 1986; 29: 380
- 4a Dorr RT. Bellamy W. Liddil JD. Baker A. Bair KW. Anti-Cancer Drug Des. 1998; 13: 825
- 4b Carini DJ. Kaltenbach RF. Liu J. Benfield PA. Boylan J. Boisclair M. Brizuela L. Burton CR. Cox S. Grafstrom R. Harrison BA. Harrison K. Akamike E. Markwalder JA. Nakano Y. Seitz SP. Sharp DM. Trainer GL. Sielecki TM. Bioorg. Med. Chem. Lett. 2001; 11: 2209
- 4c Nakamura K. Uenaka T. Nagasu T. Sugumi H. Yamaguchi A. Kotake Y. Okada T. Kamata J. Niijima J. Taniguchi T. Koyanagi N. Yoshino H. Kitoh K. Yoshimatsu K. Cancer Sci. 2003; 94: 119
- 5a Ding M. He F. Poss MA. Rigat KL. Wang Y.-K. Roberts SB. Qiu D. Fridell RA. Gao M. Gentles RG. Org. Biomol. Chem. 2011; 9: 6654
- 5b Ennis MD. Hoffman RL. Ghazal NB. Olson RM. Knauer CS. Chio CL. Hyslop DK. Campbell JE. Fitzgerald LW. Nichols NF. Svensson KA. McCall RB. Haber CL. Kageyc ML. Dinhc DM. Bioorg. Med. Chem. Lett. 2003; 13: 2369
- 6a Li B. Zhang B. Zhang X. Fan X. Chem. Commun. 2017; 53: 1297 ; and references cited therein
- 6b Kuo C.-W. Konala A. Lin L. Chiang T.-T. Huang C.-Y. Yang T.-H. Kavala V. Yao C.-F. Chem. Commun. 2016; 52: 7870
- 6c Guo S. Yuan K. Gu M. Lin A. Yao H. Org. Lett. 2016; 18: 5236
- 6d Huang J.-R. Qin L. Zhu Y.-Q. Song Q. Dong L. Chem. Commun. 2015; 51: 2844
- 7 Kaneko T. Wang H. Okamoto KT. Clardy J. Tetrahedron Lett. 1985; 26: 4015
- 8a Budén ME. Vaillard VA. Martin SE. Rossi RA. J. Org. Chem. 2009; 74: 4490
- 8b Stokes BJ. Jovanović B. Dong H. Richert KJ. Riell RD. Driver TG. J. Org. Chem. 2009; 74: 3225
- 8c Feng X.-Q. Zhang F. He X.-P. Chen G.-R. Wu X.-Y. Sha F. RSC Adv. 2016; 6: 75162
- 8d Guerra WD. Rossi RA. Pierini AB. Barolo SM. J. Org. Chem. 2015; 80: 928
- 8e Sha F. Tao Y. Tang C.-Y. Zhang F. Wu X.-Y. J. Org. Chem. 2015; 80: 8122
- 9a Cera G. Piscitelli S. Chiarucci M. Fabrizi G. Goggiamani A. Ramón RS. Nolan SP. Bandini M. Angew. Chem. Int. Ed. 2012; 51: 9891
- 9b Kusama H. Suzuki Y. Takaya J. Iwasawa N. Org. Lett. 2006; 8: 895
- 9c Cariou K. Ronan B. Mignani S. Fensterbank L. Malacria M. Angew. Chem. Int. Ed. 2007; 46: 1881
- 10 Review article on alkyne–carbonyl metathesis, see: Saito A. Tateishi K. Heterocycles 2016; 92: 607 ; and references cited therein
- 11a Bera K. Sarkar S. Biswas S. Maiti S. Jana U. J. Org. Chem. 2011; 76: 3539
- 11b Bera K. Sarkar S. Jalal S. Jana U. J. Org. Chem. 2012; 77: 8780
- 11c Bera K. Jalal S. Sarkar S. Jana U. Org. Biomol. Chem. 2014; 12: 57
- 11d Jalal S. Bera K. Sarkar S. Paul K. Jana U. Org. Biomol. Chem. 2014; 12: 1759
For reviews, see:
Recent references, see: