Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(22): 5007-5016
DOI: 10.1055/s-0036-1588501
DOI: 10.1055/s-0036-1588501
paper
Palladium-Catalyzed Regio- and Stereoselective Hydrosulfonation of Propiolate Esters
Ministry of Science and Technology of Taiwan (MOST104-2113-M-009-014-MY3 and MOST105-2628-M-009-002-MY3)Further Information
Publication History
Received: 15 April 2017
Accepted after revision: 09 June 2017
Publication Date:
31 July 2017 (online)

Abstract
An efficient palladium-catalyzed addition reaction of alkyl- and arylsulfonic acids to propiolate esters to yield alkenyl sulfonates is demonstrated. The formation of alkenyl sulfonates is highly regio- and stereoselective with favorable yields of up to 95%, and two of the alkenyl sulfonates are utilized for a Sonogashira cross-coupling reaction to produce (Z)-1,3-enynoates.
Key words
palladium - sulfonic acid - propiolate - regioselective - stereoselective - alkenyl sulfonate - Sonogashira cross-couplingSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588501. Scanned photocopies of NMR (CDCl3) spectral data for all new compounds and X-ray crystallographic (CIF) data of compounds 3a, 3g, 3k, and 3ad are included.
- Supporting Information
- CIF File
-
References
- 1a Cherney AH. Kadunce NT. Reisman SE. Chem. Rev. 2015; 115: 9587
- 1b Echavarren AM. Cárdenas DJ. In Mechanistic Aspects of Metal-Catalyzed C,C- and C,X-Bond-Forming Reactions . In Metal-Catalyzed Cross-Coupling Reactions . 2nd ed.; de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2008: 1-40
- 1c Miyaura N. Metal-Catalyzed Cross-Coupling Reactions of Organoboron Compounds with Organic Halides. In Metal-Catalyzed Cross-Coupling Reactions. 2nd ed.; de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2008: 41-123
- 1d Nakao Y. Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
- 1e Ouyang K. Hao W. Zhang W.-X. Xi Z. Chem. Rev. 2015; 115: 12045
- 1f Patil NT. Kavthe RD. Shinde VS. Tetrahedron 2012; 68: 8079
- 1g Shi Z. Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3381
- 1h Comprehensive Organic Synthesis . Vol. 1–9. Trost BM. Fleming I. Pergamon Press; Oxford: 1991
- 1i Kadikova RN. Ramazanov IR. Vyatkin AV. Dzhemilev UM. Synthesis 2017; 49: 1889
- 1j Zhang M. Zhao Y. Chen W. Synthesis 2017; 49: 1342
- 2a Busacca CA. Fandrick DR. Song JJ. Senanayake CH. Transition Metal Catalysis in the Pharmaceutical Industry. In Applications of Transition Metal Catalysis in Drug Discovery and Development: An Industrial Perspective. Crawley ML. Trost BM. Wiley; New York: 2012: 1-24
- 2b Chinchilla R. Nájera C. Chem. Rev. 2014; 114: 1783
- 3a Ogawa A. Addition of X–Y Reagents to Alkenes, Alkynes, and Allenes . In Comprehensive Organic Synthesis . Knochel P. Molander GA. Elsevier; Amsterdam: 2014
- 3b Indukuri K. Cornelissen L. Riant O. Synthesis 2016; 48: 4400
- 4a Cacchi S. Fabrizi G. Chem. Rev. 2011; 111: PR215
- 4b He Y.-T. Wang Q. Li L.-H. Liu X.-Y. Xu P.-F. Liang Y.-M. Org. Lett. 2015; 17: 5188
- 5a Hosseyni S. Su Y. Shi X. Org. Lett. 2015; 17: 6010
- 5b Kim SM. Lee D. Hong SH. Org. Lett. 2014; 16: 6168
- 6a Adamo MF. A. Bellini G. Suresh S. Tetrahedron 2011; 67: 5784
- 6b Cai S. Yang K. Wang DZ. Org. Lett. 2014; 16: 2606
- 6c Chary BC. Kim S. J. Org. Chem. 2010; 75: 7928
- 6d Genin E. Toullec PY. Antoniotti S. Brancour C. Genêt J.-P. Michelet V. J. Am. Chem. Soc. 2006; 128: 3112
- 6e Paioti PH. S. Ketcham JM. Aponick A. Org. Lett. 2014; 16: 5320
- 6f Pflasterer D. Hashmi AS. K. Chem. Soc. Rev. 2016; 45: 1331
- 7a Fujino D. Yorimitsu H. Osuka A. J. Am. Chem. Soc. 2014; 136: 6255
- 7b Tsukada N. Takahashi A. Inoue Y. Tetrahedron Lett. 2011; 52: 248
- 7c Wakabayashi T. Ishii Y. Murata T. Mizobe Y. Hidai M. Tetrahedron Lett. 1995; 36: 5585
- 7d Blouin S. Blond G. Donnard M. Gulea M. Suffert J. Synthesis 2017; 49: 1767
- 8a Fang G. Bi X. Chem. Soc. Rev. 2015; 44: 8124
- 8b Lv S. Wang J. Zhang C. Xu S. Shi M. Zhang J. Angew. Chem. Int. Ed. 2015; 54: 14941
- 8c Kataoka Y. Matsumoto O. Tani K. Chem. Lett. 1996; 25: 727
- 9a Cheung K.-C. Wong W.-L. So M.-H. Zhou Z.-Y. Yan S.-C. Wong K.-Y. Chem. Commun. 2013; 49: 710
- 9b Doucet H. Martin-Vaca B. Bruneau C. Dixneuf PH. J. Org. Chem. 1995; 60: 7247
- 9c Kawatsura M. Namioka J. Kajita K. Yamamoto M. Tsuji H. Itoh T. Org. Lett. 2011; 13: 3285
- 9d Rotem M. Shvo Y. Organometallics 1983; 2: 1689
- 10a Newman MS. Addor RW. J. Am. Chem. Soc. 1955; 77: 3789
- 10b Ravindar K. Sridhar Reddy M. Deslongchamps P. Org. Lett. 2011; 13: 3178
- 11 Nguyen TH. Paluck SJ. McGahran AJ. Maynard HD. Biomacromolecules 2015; 16: 2684
- 12a Limmert ME. Roy AH. Hartwig JF. J. Org. Chem. 2005; 70: 9364
- 12b Liu N.-W. Liang S. Manolikakes G. Synthesis 2016; 48: 1939
- 12c Liu X.-T. Ding Z.-C. Ju L.-C. Xu S.-X. Zhan Z.-P. Synthesis 2017; 49: 1575
- 13 Nakatsuji H. Ueno K. Misaki T. Tanabe Y. Org. Lett. 2008; 10: 2131
- 14 Cui D.-M. Meng Q. Zheng J.-Z. Zhang C. Chem. Commun. 2009; 1577
- 15 Yang Y. Moschetta EG. Rioux RM. ChemCatChem 2013; 5: 3005
- 16 Fan YC. Kwon O. Org. Lett. 2015; 17: 2058
- 17 Vasilyev AV. Walspurger S. Chassaing S. Pale P. Sommer J. Eur. J. Org. Chem. 2007; 5740
- 18a Chuang S.-C. Sung S.-P. Deng J.-C. Chiou M.-F. Hsu D.-S. Org. Biomol. Chem. 2016; 14: 2306
- 18b Deng J.-C. Chen W.-Y. Zhu C. Chuang S.-C. Adv. Synth. Catal. 2015; 357: 1453
- 18c Deng J.-C. Chuang S.-C. Org. Lett. 2011; 13: 2248
- 18d Deng J.-C. Kuo C.-W. Chuang S.-C. Chem. Commun. 2014; 50: 10580
- 18e Lin Y.-W. Deng J.-C. Hsieh Y.-Z. Chuang S.-C. Org. Biomol. Chem. 2014; 12: 162
- 18f Tai H.-C. Chavan AS. Chuang S.-C. Synthesis 2015; 47: 2223
- 18g Tseng P.-Y. Chuang S.-C. Adv. Synth. Catal. 2013; 355: 2165
- 18h Wu A.-J. Tseng P.-Y. Hsu W.-H. Chuang S.-C. Org. Lett. 2016; 18: 224
- 19 CCDC 1448268, 1448269, 1448270, and 1451901 contain the supplementary crystallographic data of 3a, 3g, 3k, and 3ad for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 20a Shi Z. He C. J. Org. Chem. 2004; 69: 3669
- 20b Yoon MY. Kim JH. Choi DS. Shin US. Lee JY. Song CE. Adv. Synth. Catal. 2007; 349: 1725
- 21a Akpınar GE. Kuş M. Üçüncü M. Karakuş E. Artok L. Org. Lett. 2011; 13: 748
- 21b Takeuchi R. Tanabe K. Tanaka S. J. Org. Chem. 2000; 65: 1558
- 22a Bates CG. Saejueng P. Venkataraman D. Org. Lett. 2008; 10: 2131
- 22b Venkataraman D. Bates CG. Saejueng P. Synthesis 2005; 1706
- 22c Tseng P.-Y. Chuang S.-C. Adv. Synth. Catal. 2013; 355: 2165
- 22d Nakatsuji H. Ueno K. Misaki T. Tanabe Y. Org. Lett. 2008; 10: 2131
- 23 Chavan A. Deng J.-C. Chuang S.-C. Molecules 2013; 18: 2611