Subscribe to RSS
DOI: 10.1055/s-0036-1588535
Pd-catalyzed Auto-Tandem Cascades Based on N-Sulfonylhydrazones: Hetero- and Carbocyclization Processes
Financial support of this work by the Ministerio de Economía y Competitividad (MINECO) of Spain: Grants CTQ2013-41336-P and CTQ2016-76794-P (AEI/FEDER, UE). A Severo Ochoa predoctoral fellowship (Principado de Asturias, Spain) to R.B. is gratefully acknowledged.Publication History
Received: 07 June 2017
Accepted after revision: 12 July 2017
Publication Date:
10 August 2017 (online)
Abstract
The Pd-catalyzed cross-coupling between N-tosylhydrazones and organic halides is a powerful method for the creation of C–C bonds. This transformation has been included recently in cascade processes in which the same catalyst promotes various independent catalytic steps, a process known as auto-tandem catalysis. This strategy proves to be very useful for the construction of relatively complex carbo- and heterocyclic structures, as well as for the generation of molecular diversity. This short review will cover the different Pd-catalyzed auto-tandem reactions involving N-tosylhydrazones organized by the bond-forming sequence: C–C/C–N and C–C/C–C. Some examples of related tandem reactions leading to acyclic compounds are also highlighted.
1 Introduction
2 Auto-Tandem C–C/C–N Bond-Forming Reactions
3 Auto-Tandem C–C/C–C Bond-Forming Reactions
4 Tandem Reactions for the Synthesis of Linear Molecules
5 Summary and Outlook
-
References
- 1 Tietze LF. Domino Reactions: Concepts for Efficient Organic Synthesis. Wiley; Weinheim: 2014
- 2 Li JJ. Corey EJ. Name Reactions for Carbocyclic Ring Formations. Wiley; Hoboken: 2010
- 3a Oestreich M. The Mizoroki-Heck Reaction. Wiley; Chichester: 2009
- 3b Butler EM. Doran R. Wilson CM. Guiry PJ. In Comprehensive Organic Synthesis. 2nd ed., Vol. 4; Knochel P. Molander GA. Elsevier; Amsterdam: 2014: 810
- 3c Bräse S. de Meijere A. In Metal-Catalyzed Cross-Coupling Reactions and More. Vol. 2. de Meijere A. Bräse E. Wiley-VCH; Weinheim: 2014: 533
- 3d Xu P.-F. Wei H. In Catalytic Cascade Reactions. Xu P.-F. Wang W. Wiley; Hoboken: 2014: 283
- 4a Poli G. Giambastiani G. J. Org. Chem. 2002; 67: 9456
- 4b Fogg DE. dos Santos EN. Coord. Chem. Rev. 2004; 248: 2365
- 4c Shindoh N. Takemoto Y. Takasu K. Chem. Eur. J. 2009; 15: 12168
- 4d Patil NT. Shinde VS. Gajula B. Org. Biomol. Chem. 2012; 10: 211
- 5 For a recent account on auto-tandem reactions, see: Camp JE. Eur. J. Org. Chem. 2017; 425
- 6 Metal-Catalyzed Cross-Coupling Reactions and More. Vol. 2. de Meijere A. Bräse S. Oestreich M. Wiley-VCH; Weinheim: 2014
- 7a Ferraccioli R. Carenzi D. Rombolà O. Catellani M. Org. Lett. 2004; 6: 4759
- 7b Fang Y.-Q. Lautens M. J. Org. Chem. 2008; 73: 538
- 7c Candito DA. Lautens M. Angew. Chem. Int. Ed. 2009; 48: 6713
- 7d Yadav AK. Verbeeck S. Hostyn S. Franck P. Sergeyev S. Maes BU. W. Org. Lett. 2013; 15: 1060
- 8a Bedford RB. Cazin CS. J. Chem. Commun. 2002; 2310
- 8b Ackermann L. Althammer A. Angew. Chem. Int. Ed. 2007; 46: 1627
- 9a García A. Rodríguez D. Castedo L. Saá C. Domínguez D. Tetrahedron Lett. 2001; 42: 1903
- 9b Prashad M. Liu Y. Mak XY. Har D. Repič O. Blacklock TJ. Tetrahedron Lett. 2002; 43: 8559
- 9c Szlosek-Pinaud M. Diaz P. Martínez J. Lamaty F. Tetrahedron Lett. 2003; 44: 8657
- 9d Lautens M. Fang Y.-Q. Org. Lett. 2003; 5: 3679
- 9e Wegner HA. Scott LT. de Meijere A. J. Org. Chem. 2003; 68: 883
- 9f Leclerc J.-P. André M. Fagnou K. J. Org. Chem. 2006; 71: 1711
- 9g Pinto A. Neuville L. Zhu J. Angew. Chem. Int. Ed. 2007; 46: 3291
- 9h Chai DI. Lautens M. J. Org. Chem. 2009; 74: 3054
- 9i Liu T.-P. Xing C.-H. Hu Q.-S. Angew. Chem. Int. Ed. 2010; 49: 2909
- 9j Ye S. Liu J. Wu J. Chem. Commun. 2012; 48: 5028
- 9k Wang W.-Y. Feng X. Hu B.-L. Deng C.-L. Zhang X.-G. J. Org. Chem. 2013; 78: 6025
- 10 Barluenga J. Fernández MA. Aznar F. Valdés C. Chem. Eur. J. 2005; 11: 2276
- 11a Barluenga J. Jiménez-Aquino A. Valdés C. Aznar F. Angew. Chem. Int. Ed. 2007; 46: 1529
- 11b Barluenga J. Jiménez-Aquino A. Aznar F. Valdés C. J. Am. Chem. Soc. 2009; 131: 4031
- 12a Barluenga J. Moriel P. Valdés C. Aznar F. Angew. Chem. Int. Ed. 2007; 46: 5587
- 12b Barluenga J. Tomás-Gamasa M. Moriel P. Aznar F. Valdés C. Chem. Eur. J. 2008; 14: 4792
- 12c Barluenga J. Escribano M. Moriel P. Aznar F. Valdés C. Chem. Eur. J. 2009; 15: 13291
- 12d Barluenga J. Escribano M. Aznar F. Valdés C. Angew. Chem. Int. Ed. 2010; 49: 6856
- 13a Greenman KL. Carter DS. Van Vranken DL. Tetrahedron 2001; 57: 5219
- 13b Greenman KL. Van Vranken DL. Tetrahedron 2005; 61: 6438
- 13c Devine SK. J. Van Vranken DL. Org. Lett. 2007; 9: 2047
- 14a Barluenga J. Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
- 14b Xiao Q. Zhang Y. Wang J. Acc. Chem. Res. 2013; 46: 236
- 14c Liu Z. Wang J. J. Org. Chem. 2013; 78: 10024
- 14d Xia Y. Wang J. Chem. Soc. Rev. 2017; 46: 2306
- 15 Barluenga J. Quiñones N. Cabal M.-P. Aznar F. Valdés C. Angew. Chem. Int. Ed. 2011; 50: 2350
- 16a Ibrahem I. Casas J. Córdova A. Angew. Chem. Int. Ed. 2004; 43: 6528
- 16b Rodriguez B. Bolm C. J. Org. Chem. 2006; 71: 2888
- 17 Huang Z. Yang Y. Xiao Q. Zhang Y. Wang J. Eur. J. Org. Chem. 2012; 6586
- 18 Florentino L. Aznar F. Valdés C. Chem. Eur. J. 2013; 19: 10506
- 19a Florentino L. Aznar F. Valdés C. Org. Lett. 2012; 14: 2323
- 19b Barluenga J. Florentino L. Aznar F. Valdés C. Org. Lett. 2011; 13: 510
- 20 Barroso R. Valencia RA. Cabal M.-P. Aznar F. Valdés C. Org. Lett. 2014; 16: 2264
- 21 Barroso R. Cabal M.-P. Badía-Laiño R. Valdés C. Chem. Eur. J. 2015; 21: 16463
- 22 Ngo TN. Dang TT. Villinger A. Langer P. Adv. Synth. Catal. 2016; 358: 1328
- 23 Xiao Q. Ma J. Yang Y. Zhang Y. Wang J. Org. Lett. 2009; 11: 4732
- 24 Paraja M. Valdés C. Org. Lett. 2017; 19: 2034
- 25 Roche M. Hamze A. Brion J.-D. Alami M. Org. Lett. 2013; 15: 148
- 26 Naret T. Retailleau P. Bignon J. Brion J.-D. Alami M. Hamze A. Adv. Synth. Catal. 2016; 358: 1833
- 27 Zeng X. Cheng G. Shen J. Cui X. Org. Lett. 2013; 15: 3022
- 28 Roche M. Frison G. Brion J.-D. Provot O. Hamze A. Alami M. J. Org. Chem. 2013; 78: 8485
- 29 Roche M. Bignon J. Brion J.-D. Hamze A. Alami M. J. Org. Chem. 2014; 79: 7583
- 30 Roche M. Salim SM. Bignon J. Levaique H. Brion J.-D. Alami M. Hamze A. J. Org. Chem. 2015; 80: 6715
For selected examples of C–C/C–N Pd-catalyzed auto-tandem processes, see:
For selected examples of C–N/C–C Pd-catalyzed auto-tandem processes, see:
For selected examples of C–C/C–C Pd-catalyzed auto-tandem processes, see:
For previous Pd-catalyzed cross-couplings involving the migratory insertion of Pd carbenes, see: