Synthesis 2017; 49(07): 1547-1554
DOI: 10.1055/s-0036-1588668
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Helical Quinone Derivatives by Oxidative Coupling of Substituted 2-Hydroxybenzo[c]phenanthrenes

Mohammad Shahabuddin
Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan   Email: karikomi@utsunomiya-u.ac.jp
,
Akira Akutsu
Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan   Email: karikomi@utsunomiya-u.ac.jp
,
Takao Kimura
Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan   Email: karikomi@utsunomiya-u.ac.jp
,
Michinori Karikomi*
Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan   Email: karikomi@utsunomiya-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 16 October 2016

Accepted after revision: 11 November 2016

Publication Date:
11 January 2017 (online)


Abstract

A concise synthesis of novel substituted quinone derivatives from commercially available starting materials was developed. For this synthesis, classical photo-induced 6π-electrocyclization was utilized, followed by oxidative aromatization reaction, and subsequent oxidative coupling reactions in the presence of CuCl(OH)-TMEDA. The unique quinone derivatives were characterized by IR, 1H, and 13C NMR spectroscopies, and mass spectroscopic data analysis. In some cases, the keto dimers were obtained as significant intermediates for the quinone synthesis.

Supporting Information

 
  • References

    • 1a Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
    • 1b Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
    • 1c Zhang S, Wang Y, Song Z, Nakajima K, Takahashi T. Chem. Lett. 2013; 42: 697
    • 1d Li X, Hewgley JB, Mulrooney CA, Yang J, Kozlowski MC. J. Org. Chem. 2003; 68: 5500
    • 1e Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
    • 1f Sharma VB, Jain SL, Sain B. J. Mol. Catal. A: Chem. 2004; 219: 61
    • 1g Xin Z, Da C, Dong S, Liu D, Weia J, Wang R. Tetrahedron: Asymmetry 2002; 13: 1937
    • 1h Whiting DA. Oxidative Coupling of Phenols and Phenol Ethers . In Comprehensive Organic Synthesis . Vol. 3. Trost BM, Fleming I, Pattenden G. Pergamon; Oxford: 1991: 659
    • 2a Chen J.-D, Fang L, Chen C.-F. Mini-Rev. Org. Chem. 2015; 12: 310
    • 2b Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 2c Shibasaki M, Matsunaga S. Chem. Soc. Rev. 2006; 35: 269
    • 2d Brunel JM. Chem. Rev. 2005; 105: 857
    • 2e Sako M, Takeuchi Y, Tsujihara T, Kodera J, Kawano T, Takizawa S, Sasai H. J. Am. Chem. Soc. 2016; 138: 11481
  • 3 Grzybowski M, Skonieczny K, Butenschoen H, Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
  • 4 Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
  • 5 Yamamura S, Nishiyama S. Synlett 2002; 533
    • 6a Srivastava S, Ali A, Tyagi A, Gupta R. Eur. J. Inorg. Chem. 2014; 2113
    • 6b Dong S, Zhu J, Porco JA. Jr. J. Am. Chem. Soc. 2008; 130: 2738
    • 6c Boldron C, Aromi G, Challa G, Gamez P, Reedijk J. Chem. Commun. 2005; 5808
    • 6d Iwai K, Yamauchi T, Hashimoto K, Mizugaki T, Ebitani K, Kaneda K. Trans. Mat. Res. Soc. Jpn. 2004; 29: 2211

      For example, see:
    • 7a Carreno MC, Garcia-Cerrada S, Urbano A. J. Am. Chem. Soc. 2001; 123: 7929
    • 7b Carreno MC, Garcia-Cerrada S, Sanz-Cuesta MJ, Urbano A. Chem. Commun. 2001; 1452
    • 7c Carreno MC, Garcia-Cerrada S, Urbano A. Chem. Commun. 2002; 1412
    • 7d Okubo H, Nakano D, Anzai S, Yamaguchi M. J. Org. Chem. 2001; 66: 557
    • 7e Zijlstra RW, Jager WF, de Lange B, van Duijnen PT, Feringa BL, Goto H, Saito A, Koumura N, Harada N. J. Org. Chem. 1999; 64: 1667
    • 7f Feringa BL. Acc. Chem. Res. 2001; 34: 504
    • 7g Grimme S, Harren J, Sobanski A, Vögtle F. Eur. J. Org. Chem. 1998; 1491
    • 7h Chen CT, Chou YC. J. Am. Chem. Soc. 2000; 122: 7662
    • 7i Sato I, Yamashita R, Kadowaki K, Yamamoto J, Shibata T, Soai K. Angew. Chem. Int. Ed. 2001; 40: 1096
    • 7j Sioncke S, Van Elshocht S, Verbiest T, Kauranen M, Phillips KE. S, Kats TJ, Persoons A. Synth. Met. 2001; 124: 191
    • 7k Byrne LT, Hewgill FR, Leege F, Skelton BW, White AH. J. Chem. Soc., Perkin Trans. 1 1982; 2855
    • 7l Hayashi N, Kanda A, Kamoto T, Higuchi H, Akita T. Heterocycles 2009; 79: 865
    • 7m Hewgill FR, Raston CL, Skelton BW, Webb RJ, White AH. Aust. J. Chem. 1983; 36: 1603
    • 7n Hewgill FR, Stewart JM. J. Chem. Soc., Chem. Commun. 1984; 1419
  • 8 Karikomi M, Yamada M, Ogawa Y, Houjou H, Seki K, Hiratani K, Haga K, Uyehara T. Tetrahedron Lett. 2005; 46: 5867
  • 9 Karikomi M, Toda M, Sasaki Y, Shibuya M, Yamada K, Kimura T, Minabe M, Hiratani K. Tetrahedron Lett. 2014; 55: 7099
    • 10a Liu L, Katz TJ. Tetrahedron Lett. 1990; 31: 3983
    • 10b Willmore ND, Liu L, Katz TJ. Angew. Chem., Int. Ed. Engl. 1992; 31: 1093
    • 10c Dai Y, Katz TJ, Nichols DA. Angew. Chem., Int. Ed. 1996; 35: 2109
    • 10d Katz TJ, Liu L, Willmore ND, Fox JM, Rheingold AL, Shi S, Nuckolls C, Rickman BH. J. Am. Chem. Soc. 1997; 119: 10054
    • 10e Nuckolls C, Katz TJ. J. Am. Chem. Soc. 1998; 120: 9541
    • 10f Fox JM, Goldberg NR, Katz TJ. J. Org. Chem. 1998; 63: 7456
    • 10g Nuckolls C, Katz TJ, Katz G, Collings PJ, Castellanos L. J. Am. Chem. Soc. 1999; 121: 79
    • 10h Fox JM, Katz TJ. J. Org. Chem. 1999; 64: 302
    • 10i Dreher SD, Weix DJ, Katz TJ. J. Org. Chem. 1999; 64: 3671
    • 10j Dreher SD, Katz TJ, Lam KC, Rheingold AL. J. Org. Chem. 2000; 65: 815
  • 11 Salim M, Akutsu A, Kimura T, Minabe M, Karikomi M. Tetrahedron Lett. 2011; 52: 4518
    • 12a Salim M, Ubukata H, Kimura T, Karikomi M. Tetrahedron Lett. 2011; 52: 6591
    • 12b Miah MJ, Shahabuddin M, Karikomi M, Salim M, Nasuno E, Kato N, Iimura K. Bull. Chem. Soc. Jpn. 2016; 89: 203
    • 12c Miah MJ, Shahabuddin M, Kayes MN, Karikomi M, Nasuno E, Kato N, Iimura K. Trans. Mat. Res. Soc. Jpn. 2016; 41: 151
  • 13 Salim M, Kimura T, Karikomi M. Heterocycles 2013; 87: 547
    • 14a Siegrist AE, Liechti P, Meyer HR, Weber K. Helv. Chim. Acta 1969; 52: 2521
    • 14b Siegrist AE, Meyer HR. Helv. Chim. Acta 1969; 52: 1282
    • 14c Siegrist AE. Helv. Chim. Acta 1967; 50: 906
  • 15 Mallory FB, Mallory CW. Org. React. 1984; 30: 48
    • 16a Wood CS, Mallory FB. J. Org. Chem. 1964; 29: 3373
    • 16b Mallory FB, Wood CS, Gordon JT. J. Am. Chem. Soc. 1964; 86: 3094
    • 16c Liu L, Yang B, Katz TJ, Poindexter MK. J. Org. Chem. 1991; 56: 3769
  • 17 Nakajima M, Miyoshi I, Kanayama K, Hashimoto S, Noji M, Koga K. J. Org. Chem. 1999; 64: 2264
    • 18a Wijsman GW, Boesveld WM, Beekman MC, Goedheijt MS, van Baar BL. M, de Kanter FJ. J, de Wolf WH, Bickelhaupt F. Eur. J. Org. Chem. 2002; 614
    • 18b Schenck LW, Kuna K, Frank W, Albert A, Asche Ch, Kucklaender U. Bioorg. Med. Chem. 2006; 14: 3599
    • 18c Hu G, Holmes D, Gendhar BF, Wulff WD. J. Am. Chem. Soc. 2009; 131: 14355
  • 19 CCDC 282996 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.