Synthesis 2017; 49(04): 899-909
DOI: 10.1055/s-0036-1588685
paper
© Georg Thieme Verlag Stuttgart · New York

Donor–Acceptor Molecular Triangles

Peter Ribar
,
Tomáš Šolomek
,
Loïc Le Pleux
,
Daniel Häussinger
,
Alessandro Prescimone
,
Markus Neuburger
,
Michal Juríček*
Further Information

Publication History

Received: 01 November 2016

Accepted after revision: 13 December 2016

Publication Date:
11 January 2017 (online)


Dedicated to Professor Paul Knochel on the occasion of his presidency at the 51st Bürgenstock Conference

Abstract

The synthesis and optoelectronic properties of five donor–acceptor molecules, featuring an electron-acceptor unit made of six fused benzenoid rings that resembles an equilateral triangle, are described. These molecular ‘triangles’ were synthesized in eight steps from simple building blocks such that the electron-donor substituents could be installed in the last step by means of the Suzuki cross-coupling reaction. All molecules absorb and emit visible light in the region of around 450–650 and 550–850 nm, respectively, exhibit solvatochromism, and possess up to four redox states.

Supporting Information

Primary Data

 
  • References

  • 1 New address: T. Šolomek, Department of Chemistry and Argonne-Northwestern Solar Energy Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.
  • 3 Schwoerer M, Wolf HC. Organic Molecular Solids . Wiley-VCH; Weinheim: 2007
    • 5a The Porphyrin Handbook . Vols. 15–20. Kadish KM, Smith KM, Guilard R. Academic Press; San Diego: 2003
    • 5b de la Torre D, Nicolau M, Torres T In Supramolecular Photosensitive and Electroactive Materials . Nalwa HS. Academic Press; New York: 2001: 1-111
  • 7 Fullerenes: Principles and Applications . Langa F, Nierengarten J.-F. The Royal Society of Chemistry; Cambridge: 2007
  • 8 Clar E, Stewart DG. J. Am. Chem. Soc. 1953; 75: 2667
    • 9a Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K. J. Am. Chem. Soc. 2001; 123: 12702
    • 9b Allinson G, Bushby RJ, Paillaud J.-L, Thornton-Pett M. J. Chem. Soc., Perkin Trans. 1 1995; 385
  • 13 Iwahara H, Kushida T, Yamaguchi S. Chem. Commun. 2016; 52: 1124
  • 14 Huang C, Barlow S, Marder SR. J. Org. Chem. 2011; 76: 2386
  • 15 Wegner HA, Reisch H, Rauch K, Demeter A, Zachariasse KA, de Meijere A, Scott LT. J. Org. Chem. 2006; 71: 9080
    • 16a Hoffmann V, Jenny N, Häussinger D, Neuburger M, Mayor M. Eur. J. Org. Chem. 2016; 2187
    • 16b He Y, Johansson M, Sterner O. Synth. Commun. 2004; 32: 4153
  • 17 Dalcanale E, Montanari F. J. Org. Chem. 1986; 51: 567
  • 18 Compound T2 was crystallized from a solution in CH2Cl2/MeOH (1:1) by slow evaporation of the solvent mixture. Crystallographic parameters: C41H40O3; 0.06 × 0.06 × 0.11 mm; monoclinic, C2/c (No. 15); a = 17.6046(12), b = 15.1726(10), and c = 24.4615(16) Å; α = 90, β = 107.854(2), and γ = 90°; V = 6219.2(7) Å3; Z = 8; T = 123 K; ρcalc = 1.240 g cm–3; μ = 0.595 mm–1. CCDC 1513957 contains the supplementary crystallographic data for this compound. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 19 Compound T3 was crystallized from a solution in CH2Cl2/MeCN (1:1) by slow evaporation of the solvent mixture. Crystallographic parameters: [C42H43NO2]·0.5(CH2Cl2); 0.07 × 0.09 × 0.10 mm; orthorhombic, Pnnm (No. 58); a = 14.8990(11), b = 25.4300(19), and c = 9.5165(7) Å; α = 90, β = 90, and γ = 90°; V = 3505.6(5) Å3; Z = 4; T = 123 K; ρcalc = 1.1600 g cm–3; μ = 1.196 mm–1. CCDC 1513958 contains the supplementary crystallographic data for this compound. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 20 An Z, Odom SA, Kelley RF, Huang C, Zhang X, Barlow S, Padilha LA, Fu J, Webster S, Hagan DJ, Van Stryland EW, Wasielewski MR, Marder SR. J. Phys. Chem. A 2009; 113: 5585
  • 21 Nakazono S, Easwaramoorthi S, Kim D, Shinokubo H, Osuka A. Org. Lett. 2009; 11: 5426
  • 22 Dey S, Efimov A, Lemmetyinen H. Eur. J. Org. Chem. 2012; 2367
  • 23 Shoer LE, Eaton SW, Margulies EA, Wasielewski MR. J. Phys. Chem. B 2015; 119: 7635
  • 24 Hartnett PE, Margulies EA, Matte HS. S. R, Hersam MC, Marks TJ, Wasielewski MR. Chem. Mater. 2016; 28: 3928
  • 25 Eaton SW, Shoer LE, Karlen SD, Dyar SM, Margulies EA, Veldkamp BS, Ramanan C, Hartzler DA, Savikhin S, Marks TJ, Wasielewski MR. J. Am. Chem. Soc. 2013; 135: 14701
  • 26 Fulmer GR, Miller AJ. M, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI. Organometallics 2010; 29: 2176
  • 27 Bruker Analytical X-ray Systems, Inc., APEX2, Version 2 User Manual, M86–E01078. Bruker; Madison WI: 2006
  • 28 Palatinus L, Chapuis G. J. Appl. Crystallogr. 2007; 40: 786
  • 29 Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ. J. Appl. Crystallogr. 2003; 36: 1487
    • 30a Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA. J. Appl. Crystallogr. 2008; 41: 466
    • 30b Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R. Acta Crystallogr. 2002; 58: 389
  • 31 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D.01. Gaussian, Inc; Wallingford: 2009