Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(16): 3692-3699
DOI: 10.1055/s-0036-1588780
DOI: 10.1055/s-0036-1588780
paper
Synthesis of 5-Arylpyrrole-2-carboxylic Acids as Key Intermediates for NBD Series HIV-1 Entry Inhibitors
Supported by: National Institutes of Health, USA (RO1 AI104416)Further Information
Publication History
Received: 22 February 2017
Accepted after revision: 19 March 2017
Publication Date:
18 April 2017 (online)
Abstract
5-Arylpyrrole-2-carboxylic acids are important key intermediates in the synthesis of HIV-1 entry inhibitors (such as NBD-11021 and NBD-14010). Here we present a general method for the synthesis of some 5-arylpyrrole-2-carboxylic acids in three steps starting from pyrrole. By this method, the compounds could be prepared on gram scale and without chromatographic purification.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588780.
- Supporting Information
-
References
- 1 Zhao Q. Ma L. Jiang S. Lu H. Liu S. He Y. Strick N. Neamati N. Debnath AK. Virology 2005; 339: 213
- 2 Curreli F. Choudhury S. Pyatkin I. Zagorodnikov VP. Bulay AK. Altieri A. Kwon YD. Kwong PD. Debnath AK. J. Med. Chem. 2012; 55: 4764
- 3 Curreli F. Kwon YD. Zhang H. Scacalossi D. Belov DS. Tikhonov AA. Andreev IA. Altieri A. Kurkin AV. Kwong PD. Debnath AK. J. Med. Chem. 2015; 58: 6909
- 4 Curreli F. Belov DS. Ramesh RR. Patel N. Altieri A. Kurkin AV. Debnath AK. Bioorg. Med. Chem. 2016; 24: 5988
- 5 Curreli F. Kwon YD. Belov DS. Ramesh RR. Kurkin AV. Altieri A. Kwong PD. Debnath AK. J. Med. Chem. 2017; 60: in press; doi: 10.1021/acs.jmedchem.7b00179
- 6 Madani N. Schön A. Princiotto AM. LaLonde JM. Courter JR. Soeta T. Ng D. Wang L. Brower ET. Xiang S.-H. Do Kwon Y. Huang C.-C. Wyatt R. Kwong PD. Freire E. Smith III AB. Sodroski J. Structure 2008; 16: 1689
- 7 Trofimov BA. Atavib AS. Mikhaleva AI. Kalabin GA. Chebotreva EG. Zh. Org. Khim. 1973; 10: 2205
- 8 Cernak T. Dykstra KD. Tyagarajan S. Vachal P. Krska SW. Chem. Soc. Rev. 2016; 45: 546
- 9 Filippini L. Gusmeroli M. Riva R. Tetrahedron Lett. 1992; 33: 1755
- 10 Wen J. Zhang R.-Y. Chen S.-Y. Zhang J. Yu X.-Q. J. Org. Chem. 2012; 77: 766
- 11 Ghosh I. Ghosh T. Bardagi JI. Koenig B. Science 2014; 346: 725
- 12 Sun G. Ren S. Zhu X. Huang M. Wan Y. Org. Lett. 2016; 18: 544
- 13 Rieth RD. Mankad NP. Calimano E. Sadighi JP. Org. Lett. 2004; 6: 3981
- 14 Bheeter CB. Bera JK. Doucet H. Tetrahedron Lett. 2012; 53: 509
- 15 Sobenina LN. Petrova OV. Petrushenko KB. Ushakov IA. Mikhaleva AI. Meallet-Renault R. Trofimov BA. Eur. J. Org. Chem. 2013; 19: 4107
- 16 Bates RW. Sridhar S. J. Org. Chem. 2011; 76: 5026
- 17 Stuart DR. Alsabeh P. Kuhn M. Fagnou K. J. Am. Chem. Soc. 2010; 132: 18326
- 18 Boukou-Poba JP. Farnier M. Guilard R. Tetrahedron Lett. 1979; 19: 1717
- 19 Mazet C. Gade LH. Organometallics 2001; 20: 4144
- 20 O’Brien CJ. Kantchev EA. B. Valente C. Hadei N. Chass GA. Lough A. Hopkinson AC. Organ MC. Chem. Eur. J. 2006; 12: 4743
- 21 Gupton JT. Krolikowski DA. Yu RH. Vu P. Sikorski JA. Dahl ML. Jones CR. J. Org. Chem. 1992; 57: 5480
- 22 Ezquerra J. Pedregal C. Rubio A. Valenciano J. Navio JL. G. Alvarez-Builla J. Vaquero JJ. Tetrahedron Lett. 1993; 34: 6317
- 23 Sobenina LN. Sergeeva MP. Mikhaleva AI. Sigalov MV. Korostova SE. Golovanova NI. Salaurov VN. Bakhareva EV. Vasil’eva NN. Chem. Heterocycl. Compd. 1990; 26: 516
- 24 Swartz DL. II. Odom AL. Organometallics 2006; 25: 6125
- 25 Du W. Zhao M.-N. Ren Z.-H. Wang Y.-Y. Guan Z.-H. Chem. Commun. 2014; 50: 7437
- 26 Burghart A. Kim H. Welch MB. Thoresen LH. Reibenspies J. Burgess K. Bergstrom F. Johansson LB. J. Org. Chem. 1999; 64: 7813