Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(14): 3149-3156
DOI: 10.1055/s-0036-1588800
DOI: 10.1055/s-0036-1588800
paper
Metal- and Acid-Free Methyl Triflate Catalyzed Meyer–Schuster Rearrangement
Supported by: National Natural Science Foundation of China (21372034)Supported by: Department of Science and Technology of Sichuan Province (2016HH0074)
Supported by: Education Department of Sichuan Province (16ZA0084)
Supported by: Chengdu Science and Technology Bureau (2015-HM01-00362-SF)
Supported by: State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2016Z004)
Further Information
Publication History
Received: 24 January 2017
Accepted after revision: 28 March 2017
Publication Date:
26 April 2017 (online)
Abstract
A novel metal- and acid-free preparation of synthetically useful α,β-unsaturated carbonyl compounds from propargyl alcohols has been realized. This Meyer–Schuster rearrangement process is effectively catalyzed by methyl triflate (20 mol%) to prepare a broad scope of conjugated E-enals and E-enones generally in good to excellent yields (up to 90%). This reaction procedure operates under mild conditions (70 °C), in air, with short reaction times (1 h). Moreover, a carbocation intermediate trapped by the solvent 2,2,2-trifluoroethanol was isolated during this transformation.
Key words
Meyer–Schuster rearrangement - methyl triflate - propargyl alcohols - α,β-unsaturated carbonyl compounds - metal-free - acid-freeSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588800.
- Supporting Information
-
References
- 1a The Chemistry of Enones . Patai S. Rappoport Z. Wiley; New York: 1989
- 1b Comprehensive Organic Synthesis . Vol. Trost BM. Fleming I. Semmelhack M. Pergamon; Oxford: 1991: 4
- 1c Otera J. Modern Carbonyl Chemistry . Wiley-VCH; Weinheim: 2000
- 2a Maryanoff BE. Reitz AB. Chem. Rev. 1989; 89: 863
- 2b Choudary BM. Kantam ML. Ranganath KV. S. Mahendar K. Sreedhar B. J. Am. Chem. Soc. 2004; 126: 3396
- 2c Kurti L. Czakó B. Strategic Applications of Named Reactions in Organic Synthesis. Elsevier; Amsterdam: 2005
- 2d Meinwald J. J. Chem. Educ. 1965; 42: A910
- 3 Meyer KH. Schuster K. Ber. Dtsch. Chem. Ges. 1922; 55: 819
- 4 Trost BM. Science 1991; 254: 1471
- 5a Swaminathan S. Narayanan KV. Chem. Rev. 1971; 71: 429
- 5b Rupe H. Kambli E. Helv. Chim. Acta 1926; 9: 672
- 6a Okamoto N. Sueda T. Yanada R. J. Org. Chem. 2014; 79: 9854
- 6b Nikolaev A. Orellana A. Org. Lett. 2015; 17: 5796
- 6c Xiong YP. Wu MY. Zhang XY. Ma CL. Huang L. Zhao LJ. Tan B. Liu XY. Org. Lett. 2014; 16: 1000
- 6d Yu Y. Yang WB. Pflasterer D. Hashmi AS. K. Angew. Chem. Int. Ed. 2014; 53: 1144
- 6e Collins BS. L. Suero MG. Gaunt MJ. Angew. Chem. Int. Ed. 2013; 52: 5799
- 6f Hansmann MM. Hashmi AS. K. Lautens M. Org. Lett. 2013; 15: 3226
- 6g Laali KK. Nandi GC. Borosky GL. Kumar GG. K. S. N. Eur. J. Org. Chem. 2013; 5455
- 6h Mattia E. Porta A. Merlini V. Zanoni G. Vidari G. Chem. Eur. J. 2012; 18: 11894
- 6i Pennell MN. Unthank MG. Turner P. Sheppard TD. J. Org. Chem. 2011; 76: 1479
- 6j Sugawara Y. Yamada W. Yoshida S. Ikeno T. Yamada T. J. Am. Chem. Soc. 2007; 129: 12902
- 6k Engel DA. Dudley GB. Org. Lett. 2006; 8: 4027
- 6l Yang YC. Shen YA. Wang XL. Zhang Y. Wang DW. Shi XD. Tetrahedron Lett. 2016; 57: 2280
- 6m Zhu YX. Sun L. Lu P. Wang YG. ACS Catal. 2014; 4: 1911
- 7a Yan XY. Yi XL. Xi CJ. Org. Chem. Front. 2014; 1: 657
- 7b Yan XY. Zou S. Zhao P. Xi CJ. Chem. Commun. 2014; 50: 2775
- 7c Zhao P. Yan XY. Yin H. Xi CJ. Org. Lett. 2014; 16: 1120
- 7d Zhao P. Liu Y. Xi CJ. Org. Lett. 2015; 17: 4388
- 7e Liu Y. Zhao P. Zhang B. Xi CJ. Org. Chem. Front. 2016; 3: 1116
- 7f Wang S. Shao P. Du GX. Xi CJ. J. Org. Chem. 2016; 81: 6672
- 8a Begue JP. Bonnet-Delpon D. Crousse B. Synlett 2004; 18
- 8b Protti S. Fagnoni M. Albini A. Angew. Chem. Int. Ed. 2005; 44: 5675
- 8c Abitelli E. Protti S. Fagnoni M. Albini A. J. Org. Chem. 2012; 77: 3501
- 8d Liu WB. Wang HN. Li CJ. Org. Lett. 2016; 18: 2184
- 9 Edens M. Boerner D. Chase CR. Nass D. Schiavelli MD. J. Org. Chem. 1977; 42: 3403
- 10 Battistuzzi G. Cacchi S. Fabrizi G. Org. Lett. 2003; 5: 777
- 11 Liu J. Zhu J. Jiang HL. Wang W. Li J. Chem. Commun. 2010; 46: 415
- 12 Patil NT. Singh V. Chem. Commun. 2011; 47: 11116
- 13 Fabio K. Guillon C. Lacey CJ. Lu SF. Heindel ND. Ferris CF. Placzek M. Jones G. Brownstein MJ. Simon NG. Bioorg. Med. Chem. 2012; 20: 1337
- 14 Nudelman A. Binnes Y. Shmueli-Broide N. Hieble JP. Sulpizio AC. Arch. Pharm. (Weinheim) 1996; 329: 125
- 15 Zhu J. Liu J. Ma RQ. Xie HX. Li J. Jiang HL. Wang W. Adv. Synth. Catal. 2009; 351: 1229
- 16 Smith MR. Kim JY. Ciufolini MA. Tetrahedron Lett. 2013; 54: 2042
- 17 Bharathi P. Periasamy M. Org. Lett. 1999; 1: 857
- 18 Castagnolo D. Botta L. Botta M. J. Org. Chem. 2009; 74: 3172
- 19 Marion N. Carlqvist P. Gealageas R. de Fremont P. Maseras F. Nolan SP. Chem. Eur. J. 2007; 13: 6437
- 20 Yang YC. Shen YA. Wang XL. Zhang Y. Wang DW. Shi XD. Tetrahedron Lett. 2016; 57: 2280
- 21 Arcadi A. Cacchi S. Marinelli F. Tetrahedron 1985; 41: 5121
- 22 Montignoul C. Richard MJ. Vigne C. Giral L. J. Heterocycl. Chem. 1984; 21: 1489
- 23 Maraval V. Duhayon C. Coppel Y. Chauvin R. Eur. J. Org. Chem. 2008; 5144
- 24 Shi M. Li CQ. Jiang JK. Helv. Chim. Acta 2002; 85: 1051
- 25 Nakajima K. Shibata M. Nishibayashi Y. J. Am. Chem. Soc. 2015; 137: 2472