Subscribe to RSS
DOI: 10.1055/s-0036-1588817
Some Aspects of Reductive Amination in the Presence of Carbon Monoxide: Cyclopropyl Ketones as Bifunctional Electrophiles
The work was financially supported by the Russian Science Foundation (grant # 16-13-10393).Publication History
Received: 22 February 2017
Accepted after revision: 07 April 2017
Publication Date:
18 May 2017 (online)
Abstract
We conducted detailed studies on CO-assisted reductive chemistry with cyclopropyl ketones as a special type of substrate. Multiple factors influencing the outcome of the reaction have been studied for both ruthenium and rhodium catalysis. An unusual rearrangement of aminomethylcyclopropanes was found. We showed that some reductive reactions, which were believed to proceed through a water–gas shift reaction pathway, can nonetheless take place even without an external or internal water source, indicating a more interesting reaction mechanism. Cyclopropylketones were employed as bifunctional electrophiles and, depending on the conditions, the reaction with an amine can lead to a number of products, including aminoketones, cyclopropyl methylamines, pyrrolidines or 1,4-diaminopentanes.
Key words
donor–acceptor cyclopropane - pyrrolidines - carbon monoxide - reductive amination - water–gas shift reaction - cyclopropyl amines rearrangement - ring openingSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588817.
- Supporting Information
- MP4 File
-
References
- 1 Warren S. Wyatt P. Organic Synthesis, 2nd Edition: The Disconnection Approach. Oxford; Wiley-Blackwell: 2008: 54
- 2a Chusov D. List B. Angew. Chem. Int. Ed. 2014; 53: 5199
- 2b Kolesnikov PN. Usanov DL. Barablina EA. Maleev VI. Chusov D. Org. Lett. 2014; 16: 5068
- 2c Kolesnikov PN. Yagafarov NZ. Usanov DL. Maleev VI. Chusov D. Org. Lett. 2015; 17: 173
- 2d Yagafarov NZ. Kolesnikov PN. Usanov DL. Novikov VV. Nelyubina YV. Chusov D. Chem. Commun. 2016; 52: 1397
- 2e Afanasyev OI. Tsygankov AA. Usanov DL. Perekalin DS. Shvydkiy NV. Maleev VI. Kudinov AR. Chusov D. ACS Catal. 2016; 6: 2043
- 3 Afanasyev OI. Tsygankov AA. Usanov DL. Chusov D. Org. Lett. 2016; 18: 5968
- 4a Kulinkovich OG. Cyclopropanes in Organic Synthesis . John Wiley & Sons; New York: 2015
- 4b Kopp F. Sklute G. Polborn K. Marek I. Knochel P. Org. Lett. 2005; 7: 3789
- 4c Rauhut CB. Cervino C. Krasovskiy A. Knochel P. Synlett 2009; 67
- 4d Carson CA. Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
- 4e Ganesh V. Chandrasekaran S. Synthesis 2016; 48: 4347
- 4f Rassadin VA. Six Y. Tetrahedron 2016; 72: 4701
- 5a Reissig H.-U. Top. Curr. Chem. 1988; 144: 73
- 5b Reissig H.-U. Zimmer R. Chem. Rev. 2003; 103: 1151
- 5c Yu M. Pagenkopf BL. Tetrahedron 2005; 61: 321
- 5d Agrawal D. Yadav VK. Chem. Commun. 2008; 6471
- 5e Carson CA. Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
- 5f De Simone F. Waser J. Synthesis 2009; 3353
- 5g Campbell MJ. Johnson JS. Parsons AT. Pohlhaus PD. Sanders SD. J. Org. Chem. 2010; 75: 6317
- 5h Lebold TP. Kerr MA. Pure Appl. Chem. 2010; 82: 1797
- 5i Kaschel J. Werz DB. Nachr. Chem. 2011; 59: 729
- 5j Mel’nikov MY. Budynina EM. Ivanova OA. Trushkov IV. Mendeleev Commun. 2011; 21: 293
- 5k Wang Z. Synlett 2012; 23: 2311
- 5l Cavitt MA. Phun LH. France S. Chem. Soc. Rev. 2014; 43: 804
- 5m Schneider TF. Kaschel J. Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
- 5n de Nanteuil F. De Simone F. Frei R. Benfatti F. Serrano E. Waser J. Chem. Commun. 2014; 50: 10912
- 5o Novikov RA. Tomilov YuV. Mendeleev Commun. 2015; 25: 1
- 5p Grover HK. Emmett MR. Kerr MA. Org. Biomol. Chem. 2015; 13: 655
- 5q Tabolin AA. Ioffe SL. Isr. J. Chem. 2016; 56: 385
- 5r Trushkov IV. Isr. J. Chem. 2016; 56: 369
- 5s Deng Y. Doyle MP. Isr. J. Chem. 2016; 56: 399
- 5t Ganesh V. Sridhar PR. Chandrasekaran S. Isr. J. Chem. 2016; 56: 417
- 5u O’Connor NR. Wood JL. Stoltz BM. Isr. J. Chem. 2016; 56: 431
- 5v Talukdar R. Saha A. Ghorai MK. Isr. J. Chem. 2016; 56: 445
- 5w Selvi T. Srinivasan K. Isr. J. Chem. 2016; 56: 454
- 5x Wang L. Tang Y. Isr. J. Chem. 2016; 56: 463
- 5y Kerr MA. Isr. J. Chem. 2016; 56: 476
- 5z Martin MC. Shenje R. France S. Isr. J. Chem. 2016; 56: 499
- 5aa Pandey AK. Ghosh A. Banerjee P. Isr. J. Chem. 2016; 56: 512
- 5ab Candish L. Gillard RM. Fernando JE. M. Levens A. Lupton DW. Isr. J. Chem. 2016; 56: 522
- 5ac Reiser O. Isr. J. Chem. 2016; 56: 531
- 6a Ivanova OA. Budynina EM. Grishin YuK. Trushkov IV. Verteletskii PV. Eur. J. Org. Chem. 2008; 5329
- 6b Chagarovskiy AO. Ivanova OA. Budynina EM. Trushkov IV. Melnikov MYa. Tetrahedron Lett. 2011; 52: 4421
- 6c Xu H. Qu J.-P. Liao S. Xiong H. Tang Y. Angew. Chem. Int. Ed. 2013; 52: 4004
- 6d Mikhaylov AA. Novikov RA. Khomutova YA. Arkhipov DE. Korlyukov AA. Tabolin AA. Tomilov YV. Ioffe SL. Synlett 2014; 25: 2275
- 6e Rakhmankulov ER. Ivanov KL. Budynina EM. Ivanova OA. Chagarovskiy AO. Skvortsov DA. Latyshev GV. Trushkov IV. Melnikov MYa. Org. Lett. 2015; 17: 770
- 6f Ivanov KL. Villemson EV. Budynina EM. Ivanova OA. Trushkov IV. Melnikov MYa. Chem. Eur. J. 2015; 21: 4975
- 6g Chidley T. Vemula N. Carson CA. Kerr MA. Pagenkopf BL. Org. Lett. 2016; 18: 2922
- 6h Tabolin AA. Gorbacheva EO. Novikov RA. Khoroshutina YA. Nelyubina YV. Ioffe SL. Izv. Akad. Nauk, Ser. Khim. 2016; 9: 2243
- 6i Mikhaylov AA. Dilman AD. Novikov RA. Khoroshutina YA. Struchkova MI. Arkhipov DE. Nelyubina YV. Tabolin AA. Ioffe SL. Tetrahedron Lett. 2016; 57: 11
- 6j Ivanova OA. Budynina EM. Skvortsov DA. Trushkov IV. Melnikov MYa. Chem. Eur. J. 2016; 22: 1223
- 6k Budynina EM. Ivanov KL. Chagarovskiy AO. Rybakov VB. Trushkov IV. Melnikov MY. Chem. Eur. J. 2016; 22: 3692
- 7a Fujita K.-I. Fujii T. Yamaguchi R. Org. Lett. 2004; 6: 3525
- 7b Sato M. Gunji Y. Ikeno T. Yamada T. Synthesis 2004; 1434
- 7c Nguyen TM. Nicewicz DA. J. Am. Chem. Soc. 2013; 135: 9588
- 7d Ozawa T. Kurahashi T. Matsubara S. Synlett 2013; 24: 2763
- 8a List B. Lerner RA. Barbas CF. J. Am. Chem. Soc. 2000; 122: 2395
- 8b Pojarliev P. Biller W. Martin H. List B. Synlett 2003; 1903
- 8c Zhang F. Peng Y. Liao S. Gong Y. Tetrahedron 2007; 63: 4636
- 8d Chandler C. Galzerano P. Michrowska A. List B. Angew. Chem. Int. Ed. 2009; 48: 1978
- 8e Martinez Cuezva A. Zumbansen K. Döhring A. van Gemmeren M. List B. Synlett 2014; 25: 932
- 9a Amara Z. Caron J. Joseph D. Nat. Prod. Rep. 2013; 30: 1211
- 9b Bhat C. Tilve SG. RSC Adv. 2014; 4: 5405
- 9c Milen M. Abranyi-Balogh P. Keglevich G. Curr. Org. Synth. 2014; 11: 889
- 9d Lood CS. Koskinen AM. P. Chem. Heterocycl. Compd. 2015; 50: 1367
- 9e Shimokawa J. Chiyoda K. Umihara H. Fukuyama T. Chem. Pharm. Bull. 2016; 64: 1239
- 9f Tanokashira N. Kukita S. Kato H. Nehira T. Angkouw ED. Mangindaan RE. P. de Voogd NJ. Tsukamoto S. Tetrahedron 2016; 72: 5530
- 9g Pandey G. Dey D. Tiwari SK. Tetrahedron Lett. 2017; 58: 699
- 9h De Luca L. Chiminazzo A. Sperni L. Strukul G. Scarso A. Chem. Eur. J. 2017; 23: 3474
- 10a Cloke JB. J. Am. Chem. Soc. 1929; 51: 1174
- 10b Wilson CL. J. Am. Chem. Soc. 1947; 69: 3002
- 10c Zuo G. Louie J. Angew. Chem. Int. Ed. 2004; 43: 2277
- 10d Wurz RP. Charette AB. Org. Lett. 2005; 7: 2313
- 10e Gopi E. Namboothiri IN. N. J. Org. Chem. 2013; 78: 910
- 10f Lin C.-H. Pursley D. Klein JE. M. N. Teske J. Allen JA. Rami F. Kohn A. Plietker B. Chem. Sci. 2015; 6: 7034
- 11 For ring-opening of donor–acceptor cyclopropanes with amines, see: Lifchits O. Charette AB. Org. Lett. 2008; 10: 2809
- 12 Calculations at the M06/SVP level have been shown to provide a good estimate for thermochemistry of organometallic reactions, see: Gusev DG. Organometallics 2013; 32: 4239
- 13 Non-specific solvation was taken in account by using the PCM model. However, specific solvation (e.g., hydrogen bonding) was not taken into account and therefore the results of the calculations should be considered as estimates.
- 15 Kolomnikov IS. Lysyak TV. Rusakov SL. Kharitonov YuYa. Russ. Chem. Rev. 1988; 57: 406
- 16 Ambrosi A. Denmark SE. Angew. Chem. Int. Ed. 2016; 55: 12164
- 17a Denmark SE. Nguyen ST. Org. Lett. 2009; 11: 781
- 17b Denmark SE. Matesich ZD. J. Org. Chem. 2014; 79: 5970
- 17c Li H.-Q. Liu X. Zhang Q. Li S.-S. Liu Y.-M. He H.-Y. Cao Y. Chem. Commun. 2015; 51: 11217
- 17d Park JW. Chung YK. ACS Catal. 2015; 5: 4846
- 18 Ford CP. Acc. Chem. Res. 1981; 14: 31 ; and references therein
For the importance of cyclopropanes in organic synthesis, see:
Donor–acceptor cyclopropanes can lead to various interesting transformations (see refs. 5 and 6). The natural limitation is that the starting material should contain both electron-donating and electron-withdrawing groups, so we decided to use accessible methyl cyclopropyl ketone, which is available on a bulk scale. For a review on chemistry of DA cyclopropanes, see:
For some recent example of DA cyclopropanes, see:
For some examples of pyrrolidine synthesis, see:
For some examples of pyrrolidine derivatives as catalysts, see:
For some examples of natural products and drugs with a pyrrolidine core, see:
For some examples of Cloke–Wilson rearrangement, see:
For recent applications of carbon monoxide as a reducing agent, see: