Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(16): 3569-3575
DOI: 10.1055/s-0036-1588842
DOI: 10.1055/s-0036-1588842
special topic
Nickel-Catalyzed Hydroalkenylation of Alkynes through C–F Bond Activation: Synthesis of 2-Fluoro-1,3-dienes
This work was financially supported by JSPS KAKENHI Grant No. JP16H01002 (J.I.) for Precisely Designed Catalysts with Customized Scaffolding, and JSPS KAKENHI Grant No. JP16K20939 (T.F.) for a Grant-in-Aid for Young Scientists (B). We acknowledge Kanto Denka Kogyo Co., Ltd., for a generous gift of ethyl bromodifluoroacetate.Further Information
Publication History
Received: 24 March 2017
Accepted after revision: 02 May 2017
Publication Date:
12 June 2017 (online)
Published as part of the Special Topic Advanced Strategies in Synthesis with Nickel
Abstract
2-Fluoro-1,3-dienes were synthesized through nickel-catalyzed coupling reactions between β,β-difluorostyrenes and alkynes in the presence of ZrF4 as co-catalyst and a hydride source derived from triethylborane and lithium isopropoxide. Mechanistic studies revealed that the carbon–fluorine bond was cleaved by β-fluorine elimination from intermediary nickelacyclopentenes generated through oxidative cyclization of the two substrates.
Key words
C–F bond activation - nickel - hydroalkenylation - β-fluorine elimination - oxidative cyclization - 1,3-dienes - fluorine - alkynesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588842.
- Supporting Information
-
References
- 1a Kalesse M. Christmann M. Synthesis 2002; 981
- 1b Christianson DW. Chem. Rev. 2006; 106: 3412
- 2 Nicolau KC. Snyder SA. Montagnon T. Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
- 3a Zhang Z. Cui D. Wang B. Liu B. Yang Y. Struct. Bonding (Berlin) 2010; 137: 49
- 3b Takeuchi D. Stereoselective Polymerization of Conjugated Dienes In Encyclopedia of Polymer Science and Technology. Wiley; New York: 2013: pp 1-25
- 4a Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
- 4b Deagostino A. Prandi C. Zavattaro C. Venturello P. Eur. J. Org. Chem. 2006; 2463
- 4c Negishi E. Huang Z. Wang G. Mohan S. Wang C. Hattori H. Acc. Chem. Res. 2008; 41: 1474
- 4d De Paolis M. Chataigner I. Maddaluno J. Top. Curr. Chem. 2012; 327: 87
- 5a RajanBabu TV. Synlett 2009; 853
- 5b Hilt G. Eur. J. Org. Chem. 2012; 4441
- 5c Greenhalgh MD. Jones AS. Thomas SP. ChemCatChem 2015; 7: 190
- 6a Arcadi A. Bernocchi E. Burini A. Cacchi S. Marinelli F. Pietroni B. Tetrahedron Lett. 1989; 30: 3465
- 6b Uno T. Wakayanagi S. Sonoda Y. Yamamoto K. Synlett 2003; 1997
- 6c Wu J. Yoshikai N. Angew. Chem. Int. Ed. 2016; 55: 336
- 7a Tsukada N. Setoguchi H. Mitsuboshi T. Inoue Y. Chem. Lett. 2006; 35: 1164
- 7b Tekavec TN. Louie J. Tetrahedron 2008; 64: 6870
- 7c Schabel T. Plietker B. Chem. Eur. J. 2013; 19: 6938
- 8a Mitsudo T. Zhang S.-W. Nagao M. Watanabe Y. J. Chem. Soc., Chem. Commun. 1991; 598
- 8b Hratchian HP. Chowdhury SK. Gutiérrez-García VM. Amarasinghe KK. D. Heeg MJ. Schlegel HB. Montgomery J. Organometallics 2004; 23: 4636
- 8c Shibata Y. Hirano M. Tanaka K. Org. Lett. 2008; 10: 2829
- 8d Mannathan S. Cheng C.-H. Chem. Commun. 2010; 1923
- 8e Horie H. Koyama I. Kurahashi T. Matsubara S. Chem. Commun. 2011; 2658
- 9 Ichitsuka T. Fujita T. Ichikawa J. ACS Catal. 2015; 5: 5947
- 10a Fujita T. Watabe Y. Yamashita S. Tanabe H. Nojima T. Ichikawa J. Chem. Lett. 2016; 45: 964 ; and references cited therein
- 10b Huang Y. Hayashi T. J. Am. Chem. Soc. 2016; 138: 12340
- 10c Thornbury RT. Toste FD. Angew. Chem. Int. Ed. 2016; 55: 11629
- 10d Doi R. Ohashi M. Ogoshi S. Angew. Chem. Int. Ed. 2016; 55: 341
- 10e Ahrens T. Teltewskoi M. Ahrens M. Braun T. Laubenstein R. Dalton Trans. 2016; 17495
- 10f Liu Y. Zhou Y. Zhao Y. Qu J. Org. Lett. 2017; 19: 946
- 10g Wang C.-Q. Ye L. Feng C. Loh T.-P. J. Am. Chem. Soc. 2017; 139: 1762
- 10h Wu J.-Q. Zhang S.-S. Gao H. Qi Z. Zhou C.-J. Ji W.-W. Liu Y. Chen Y. Li Q. Li X. Wang H. J. Am. Chem. Soc. 2017; 139: 3537
- 10i Liao F.-M. Cao Z.-Y. Yu J.-S. Zhou J. Angew. Chem. Int. Ed. 2017; 56: 2459
- 11 Fujita T. Watabe Y. Ichitsuka T. Ichikawa J. Chem. Eur. J. 2015; 21: 13225
- 12a Liu P. McCarren P. Cheong PH.-Y. Jamison TF. Houk KN. J. Am. Chem. Soc. 2010; 132: 2050
- 12b Liu P. Montgomery J. Houk KN. J. Am. Chem. Soc. 2011; 133: 6956
- 13a Ichitsuka T. Fujita T. Arita T. Ichikawa J. Angew. Chem. Int. Ed. 2014; 53: 7564
- 13b Fujita T. Arita T. Ichitsuka T. Ichikawa J. Dalton Trans. 2015; 19460
- 14 Tobisu M. Xu T. Shimasaki T. Chatani N. J. Am. Chem. Soc. 2011; 133: 19505
- 15a Konev AS. Khlebnikov AF. Collect. Czech. Chem. Commun. 2008; 73: 1553
- 15b Hayashi T. Usuki Y. Wakamatsu Y. Iio H. Synlett 2010; 2843
- 16 Zheng J. Cai J. Lin J.-H. Guo Y. Xiao J.-C. Chem. Commun. 2013; 7513
- 17 Stuart DR. Bertrand-Laperle M. Burgess KM. N. Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
For example, see:
For reviews on hydroalkenylation of alkenes, see: