Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(05): 1073-1086
DOI: 10.1055/s-0036-1588893
DOI: 10.1055/s-0036-1588893
paper
Synthesis of Di- and Triarylmethanes through Palladium-Catalyzed Reductive Coupling of N-Tosylhydrazones and Aryl Bromides
Further Information
Publication History
Received: 27 July 2016
Accepted after revision: 14 September 2016
Publication Date:
13 October 2016 (online)

Abstract
A palladium-catalyzed reductive coupling between N-tosylhydrazones and aryl bromides has been developed. The reaction provides an efficient method for the synthesis of diarylmethanes and triarylmethanes via the formation of C(sp2)–C(sp3) single bonds. This new methodology for the synthesis of diarylmethanes and triarylmethanes is featured by the ready availability of the starting materials, mild reaction conditions, and the tolerance of wide range of functional groups. The reaction follows a pathway including palladium carbene formation, migratory insertion, and reduction of the alkylpalladium(II) intermediate.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588893.
- Supporting Information
-
References
- 1a Shchepinov MS, Korshun VA. Chem. Soc. Rev. 2003; 32: 170
- 1b Ma J.-C, Dougherty DA. Chem. Rev. 1997; 97: 1303
- 1c Duxbury DF. Chem. Rev. 1993; 93: 381
- 1d Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J. Chem. Soc. Rev. 2008; 37: 1465
- 1e Beija M, Afonso CA. M, Martinho JM. G. Chem. Soc. Rev. 2009; 38: 2410
- 1f Nair V, Thomas S, Mathew SC, Abhilash KG. Tetrahedron 2006; 62: 6731
- 2a Cheltsov AV, Aoyagi M, Aleshin A, Yu EC.-W, Gilliland T, Zhai D, Bobkov AA, Reed JC, Liddington RC, Abagyan R. J. Med. Chem. 2010; 53: 3899
- 2b Palchaudhuri R, Nesterenko V, Hergenrother PJ. J. Am. Chem. Soc. 2008; 130: 10274
- 2c Long Y.-Q, Jiang X.-H, Dayam R, Sachez T, Shoemaker R, Sei S, Neamati N. J. Med. Chem. 2004; 47: 2561
- 2d Parai MK, Panda G, Chaturvedi V, Manju YK, Sinha S. Bioorg. Med. Chem. Lett. 2008; 18: 289
- 2e Snyder SA, Breazzano SP, Ross AG, Lin Y, Zografos AL. J. Am. Chem. Soc. 2009; 131: 1753
- 2f Bhasikuttan AC, Mohanty J, Nau WM, Pal H. Angew. Chem. Int. Ed. 2007; 46: 4120
- 2g Abe H, Wang J, Furukawa K, Oki K, Uda M, Tsuneda S, Ito Y. Bioconjugate Chem. 2008; 19: 1219
- 3a Zhao F, Tan Q, Xiao F, Zhang S, Deng G.-J. Org. Lett. 2013; 15: 1520
- 3b Binder JT, Cordier CJ, Fu GC. J. Am. Chem. Soc. 2012; 134: 17003
- 3c Gao J, Wang J.-Q, Song Q.-W, He L.-N. Green Chem. 2011; 13: 1182
- 3d Schmink JR, Leadbeater NE. Org. Lett. 2009; 11: 2575
- 3e López-Pérez A, Adrio J, Carretero JC. Org. Lett. 2009; 11: 5514
- 3f Zal Zotto C, Virieux D, Campagne J.-M. Synlett 2009; 276
- 3g Surya Prakash GK, Mathew T, Marinez ER, Esteves PM, Rasul G, Olah GA. J. Org. Chem. 2006; 71: 3952
- 3h Esquivias J, Arrayas RG, Carretero JC. Angew. Chem. Int. Ed. 2006; 45: 629
- 3i Arp FO, Fu GC. J. Am. Chem. Soc. 2005; 127: 10482
- 3j Mondal S, Panda G. RSC Adv. 2014; 4: 28317
- 4a Friedel–Crafts Chemistry . Olah GA. Wiley; New York: 1973
- 4b Li YZ, Li BJ, Lu XY, Lin S, Shi ZJ. Angew. Chem. Int. Ed. 2009; 48: 3817
- 4c Li ZX, Duan Z, Kang JX, Wang HQ, Yu LJ, Wu YJ. Tetrahedron 2008; 64: 1924
- 4d Esquivias J, Arrayas RG, Carretero JC. Angew. Chem. Int. Ed. 2006; 45: 629
- 4e Ivoel I, Mertins K, Kischel J, Zapf A, Beller M. Angew. Chem. Int. Ed. 2005; 44: 3913
- 4f Ogoshi S, Nakashima H, Shimonaka K, Kurosawa H. J. Am. Chem. Soc. 2001; 123: 8626
- 5a Metal Catalysed Cross Coupling Reactions . 2nd ed.; de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004
- 5b Tsubouchi A, Muramatsu D, Takeda T. Angew. Chem. Int. Ed. 2013; 52: 12719
- 5c Maity P, Shacklady-Mcatee DM, Yap GP. A, Sirianni ER, Watson MP. J. Am. Chem. Soc. 2013; 135: 280
- 5d Adams CJ, Bedford RB, Carter E, Gower NJ, Haddow MF, Harvey JN, Huwe M, Cartes MA, Mansell SM, Mendoza C, Murphy DM, Neeve EC, Nunn J. J. Am. Chem. Soc. 2012; 134: 10333
- 5e Taylor BL. H, Swift EC, Waetzig JD, Jarvo ER. J. Am. Chem. Soc. 2011; 133: 389
- 5f Piller FM, Metzger A, Schade MA, Haag BA, Gavryushin A, Knochel P. Chem. Eur. J. 2009; 15: 7192
- 5g Liégault B, Renaud J.-L, Bruneau C. Chem. Soc. Rev. 2008; 37: 290
- 5h Dohle W, Lindsay DM, Knochel P. Org. Lett. 2001; 3: 2871
- 5i Zhou Q, Srinivas HD, Dasgupta S, Watson MP. J. Am. Chem. Soc. 2013; 135: 3307
- 5j Matthew SC, Glasspoole BW, Eisenberger P, Crudden CM. J. Am. Chem. Soc. 2014; 136: 5828
- 5k Zhuo M.-H, Jiang Y.-J, Fan Y.-S, Gao Y, Liu S, Zhang S. Org. Lett. 2014; 16: 1096
- 5l Nambo M, Crudden CM. Angew. Chem. Int. Ed. 2014; 53: 742
- 5m Huang Y, Hayashi T. J. Am. Chem. Soc. 2015; 137: 7556
- 5n Nambo M, Crudden CM. ACS Catal. 2015; 5: 4734
- 6a Zhang Y, Feng M.-T, Lu J.-M. Org. Biomol. Chem. 2013; 11: 2266
- 6b Srimani D, Bej A, Sarkar A. J. Org. Chem. 2010; 75: 4296
- 6c Chen C.-R, Zhou S, Biradar DB, Gau H.-M. Adv. Synth. Catal. 2010; 352: 1718
- 6d Molander GA, Elia MD. J. Org. Chem. 2006; 71: 9198
- 6e McLaughlin M. Org. Lett. 2005; 7: 4875
- 6f Flaherty A, Trunkfield A, Barton W. Org. Lett. 2005; 7: 4975
- 7a Tabuchi S, Hirano K, Satoh T, Miura M. J. Org. Chem. 2014; 79: 5401
- 7b Bellomo A, Zhang J, Trongsiriwat N, Walsh PJ. Chem. Sci. 2013; 4: 849
- 7c Zhang J, Bellomo A, Creamer AD, Dreher SD, Walsh PJ. J. Am. Chem. Soc. 2012; 134: 13765
- 7d Taylor BL. H, Harris MR, Jarvo ER. Angew. Chem. Int. Ed. 2012; 51: 7790
- 7e McGrew GI, Temaismithi J, Carroll PJ, Walsh PJ. Angew. Chem. Int. Ed. 2010; 49: 5541
- 7f Yu JY, Kuwano R. Org. Lett. 2008; 10: 973
- 7g Niwa T, Yorimitsu H, Oshima K. Org. Lett. 2007; 9: 2373
- 8a Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
- 8b Shao Z, Zhang H. Chem. Soc. Rev. 2012; 41: 560
- 8c Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
- 8d Xia Y, Zhang Y, Wang J. ACS Catal. 2013; 3: 2586
- 8e Zhang Y, Wang J. Top. Curr. Chem. 2012; 327: 239
- 8f Liu Z, Wang J. J. Org. Chem. 2013; 78: 10024
- 9 Bamford WR, Stevens TS. J. Chem. Soc. 1952; 4735
- 10 Zhang Y, Wang J. Eur. J. Org. Chem. 2011; 1015
- 11a Barluenga J, Moriel P, Valdés C, Aznar F. Angew. Chem. Int. Ed. 2007; 46: 5587
- 11b Messaoudi S, Tréguier B, Hamze A, Morvan E, Brion J.-D, Alami M. J. Med. Chem. 2009; 52: 4538
- 11c Zhou L, Ye F, Ma J, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2011; 50: 3510
- 11d Xiao Q, Ma J, Yang Y, Zhang Y, Wang J. Org. Lett. 2009; 11: 4732
- 11e Zhao X, Jing J, Lu K, Zhang Y, Wang J. Chem. Commun. 2010; 46: 1724
- 12 Xia Y, Hu F, Liu Z, Qu P, Ge R, Ma C, Wang J. Org. Lett. 2013; 15: 1784
- 13 For the details of the reaction condition optimization, see ref. 12.
- 14 Miller B, McLaughlin MP, Marhevka VC. J. Org. Chem. 1982; 47: 710
- 15 Chang S.-T, Li Q, Chiang R.-T, Gau H.-M. Tetrahedron 2012; 68: 3956
- 16 Aitken RA, Boeters C, Morrison JJ. J. Chem. Soc., Perkin Trans. 1 1997; 2625
- 17 Young JD, Stevenson GR, Bauld NL. J. Am. Chem. Soc. 1972; 94: 8790
- 18 Aoyama T, Kubota S, Takido T, Kodomari M. Chem. Lett. 2011; 40: 484
- 19 Saito S, Ohwada T, Shudo K. J. Org. Chem. 1996; 61: 8089
- 20 Prakash GK. S, Panja C, Shakhmin A, Shah E, Mathew T, Olah GA. J. Org. Chem. 2009; 74: 8659
- 21 Zabel DE, Trahanovsky WS. J. Org. Chem. 1972; 37: 2413
- 22 Bank S, Gernon M. J. Org. Chem. 1987; 52: 5105
- 23 Klumpp DA, Jones A, Lau S, Leon SD, Garza M. Synthesis 2000; 1117
For reviews, see:
For selected examples, see:
For recent examples, see:
For a review, see:
For a recent review, see:
For reviews, see:
For selected examples, see: