Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(02): 365-370
DOI: 10.1055/s-0036-1588898
DOI: 10.1055/s-0036-1588898
paper
Highly Efficient Kinetic Resolution of PHANOL by Chiral Phosphoric Acid Catalyzed Asymmetric Acylation
Further Information
Publication History
Received: 02 August 2016
Accepted after revision: 17 September 2016
Publication Date:
14 October 2016 (online)
Dedicated to Professor Dieter Enders for his 70th birthday
Abstract
We report herein a highly efficient kinetic resolution of PHANOL by chiral phosphoric acid catalyzed asymmetric acylation. PHANOL enantiomers were well differentiated by the chiral environment of chiral phosphoric acid, and both the corresponding monoester and PHANOL were obtained with excellent enantioselectivities (98% ee and 92% ee, respectively). Detailed examination of the substrates suggests that the presence of two hydroxy groups in PHANOL was critical for both reactivity and enantioselectivity.
Key words
asymmetric synthesis - chiral biaryl - asymmetric acylation - kinetic resolution - chiral phosphoric acidSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588898.
- Supporting Information
-
References
- 1a Burk MJ. Acc. Chem. Res. 2000; 33: 363
- 1b Shibasaki M, Kanai M, Matsunaga S, Kumagai N. Acc. Chem. Res. 2009; 42: 1117
- 1c Tian S.-K, Chen Y, Hang J, Tang L, McDaid P, Deng L. Acc. Chem. Res. 2004; 37: 621
- 1d Parmer D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
- 1e Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277
- 2a Hayashi T. Acc. Chem. Res. 2000; 33: 354
- 2b Noyori R. Angew. Chem. Int. Ed. 2002; 41: 2008
- 2c Chen Y, Yekta S, Yudin AK. Chem. Rev. 2003; 103: 3155
- 2d Zhang W, Chi Y, Zhang X. Acc. Chem. Res. 2007; 40: 1278
- 2e Wang D.-S, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
- 3 Brown CJ, Farthing AC. Nature 1949; 164: 915
- 4a Testa B. Helv. Chim. Acta 2013; 96: 351
- 4b Grimme S, Harren J, Sobanski A, Vögtle F. Eur. J. Org. Chem. 1998; 1491
- 5a Pye PJ, Rossen K, Reamer RA, Tsou NN, Volante RP, Reider PJ. J. Am. Chem. Soc. 1997; 119: 1491
- 5b Dyer PW, Dyson PJ, James SL, Martin CM, Suman P. Organometallics 1998; 17: 4344
- 5c Zanotti-Gerosa A, Malan C, Herzberg D. Org. Lett. 2001; 3: 3687
- 5d Konrad TM, Fuentes JA, Slawin AM. Z, Clarke ML. Angew. Chem. Int. Ed. 2010; 49: 9197
- 5e Konrad TM, Durran JT, Cobley CJ, Clarke ML. Chem. Commun. 2013; 49: 3306
- 6 Whelligan DK, Bolm C. J. Org. Chem. 2006; 71: 4609
- 7 Wu X.-W, Hou X.-L, Dai L.-X, Tao J, Cao B.-X, Sun J. Tetrahedron: Asymmetry 2001; 12: 529
- 8 Hou X.-L, Wu X.-W, Dai L.-X, Cao B.-X, Sun J. Chem. Commun. 2000; 1195
-
9a Ma Y, Song C, Ma C, Sun Z, Chai Q, Andrus MB. Angew. Chem. Int. Ed. 2003; 42: 5871
-
9b Bolm C, Focken T, Raabe G. Tetrahedron: Asymmetry 2003; 14: 1733
- 9c Focken T, Rudolph J, Bolm C. Synthesis 2005; 429
- 10a Negru M, Schollmeyer D, Kunz H. Angew. Chem. Int. Ed. 2007; 46: 9339
- 10b Enders D, Ludwig M, Raabe G. Chirality 2012; 24: 215
- 11a Reich HJ, Cram DJ. J. Am. Chem. Soc. 1969; 91: 3505
- 11b Reich HJ, Cram DJ. J. Am. Chem. Soc. 1969; 91: 3517
- 11c Reich HJ, Cram DJ. J. Am. Chem. Soc. 1969; 91: 3527
- 11d Reich HJ, Cram DJ. J. Am. Chem. Soc. 1969; 91: 3534
- 12 Felix RJ, Weber D, Gutierrez O, Tantillo DJ, Gagne MR. Nat. Chem. 2012; 4: 405
- 13a Rowlands GJ. Org. Biomol. Chem. 2008; 6: 1527
- 13b Schneider JF, Fröhlich R, Paradies J. Isr. J. Chem. 2012; 52: 76
- 13c Kramer JJ. P, Yildiz C, Nieger M, Bräse S. Eur. J. Org. Chem. 2014; 1287
- 13d Meyer-Eppler G, Sure R, Schneider A, Schnakenburg G, Grimme S, Lützen A. J. Org. Chem. 2014; 79: 6679
- 13e Jiang B, Zhao X.-L. Tetrahedron: Asymmetry 2004; 15: 1141
- 14 Rossen K, Pye PJ, Maliakal A, Volante RP. J. Org. Chem. 1997; 62: 6462
- 15 Dorizon P, Martin C, Daran J.-C, Fiaud J.-C, Kagan HB. Tetrahedron: Asymmetry 2001; 12: 2625
- 16 Akagawa K, Nishi N, Yoshikawa I, Kudo K. Eur. J. Org. Chem. 2015; 5055
- 17 Braddock DC, MacGlip ID, Perry BG. J. Org. Chem. 2002; 67: 8679
- 18a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
- 18b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
- 18c Akiyama T, Itoh J, Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
- 18d Akiyama T. Chem. Rev. 2007; 107: 5744
- 18e Connon SJ. Angew. Chem. Int. Ed. 2006; 45: 3909
- 18f Terada M. Chem. Commun. 2008; 4097
- 18g Terada M. Synlett 2010; 1929
- 18h Zamfir A, Schenker S, Freund M, Tsogoeva SM. Org. Biomol. Chem. 2010; 8: 5262
- 18i Terada M. Curr. Org. Chem. 2011; 15: 2227
- 18j Rueping M, Kuenkel A, Atodiresei I. Chem. Soc. Rev. 2011; 40: 4539
- 18k Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047 ; see also references cited therein
- 19a Mandai H, Murota K, Mitsudo K, Suga S. Org. Lett. 2012; 14: 3486
- 19b Harada S, Kuwano S, Yamaoka Y, Yamada K, Takasu K. Angew. Chem. Int. Ed. 2013; 52: 10227
- 20 For a review on organocatalytic enantioselective acyl transfer reactions, see: Müller CE, Schreiner PR. Angew. Chem. Int. Ed. 2011; 50: 6012
- 21 For a recent review on organocatalytic kinetic resolution, see: Gurubrahamam R, Cheng Y.-S, Huang W.-Y, Chen K. ChemCatChem 2016; 8: 86
- 22 The absolute stereochemistry of recovered 1 was assigned to be R by comparison to the reported retention time of HPLC chromatogram in ref. 17 and the sign of optical rotation.
- 23a Kagan HB, Fiaud JC. Kinetic resolution . In Topics in Stereochemistry . Vol. 18. John Wiley & Sons, Inc; New York: 1988: 249
- 23b Vedejs E, Jure M. Angew. Chem. Int. Ed. 2005; 44: 3974
- 23c Eliel EL, Wilen SH, Mander LN. Stereochemistry of Organic Compounds . John Wiley & Sons, Inc; New York: 1994. 39
- 24 Moorthy JN, Mandal S, Kumar A. New J. Chem. 2013; 3: 82
For reviews, see:
For reviews, see:
For reviews, see:
For reviews, see:
For recent examples, see:
See also:
For reviews on chiral phosphoric acid catalysis, see:
For chiral phosphoric acid catalyzed kinetic resolution of secondary alcohols, see: