Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(17): 4017-4024
DOI: 10.1055/s-0036-1589035
DOI: 10.1055/s-0036-1589035
paper
Tetrabutylammonium Iodide Catalyzed Epoxidation of Naphthoquinone Derivatives with tert-Butyl Hydroperoxide as an Oxidant
This work is supported by Science and Technology Department of Sichuan Province under grant number 2015JY0171.Further Information
Publication History
Received: 19 March 2017
Accepted after revision: 02 May 2017
Publication Date:
20 June 2017 (online)

Abstract
An efficient and environmentally benign procedure has been developed for the epoxidation of naphthoquinone derivatives by using tetrabutylammonium iodide as a catalyst and tert-butyl hydroperoxide as an oxidant in the presence of silicon dioxide. This protocol, which provides a facile base-free methodology for the synthesis of some new naphthoquinone-based epoxides, features mild reaction conditions, high yields, remarkably short reaction time, and broad substrate scope
Key words
naphthoquinone derivates - expoxidation - tetrabutylammonium iodide - tert-butyl hydroperoxide - silicon dioxideSupporting Information
- Supporting information for this article is available online at https://doi.org /10.1055/s-0036-1589035.
- Supporting Information
-
References
- 1a Rappoport Z. The Chemistry of the Quinonoid Compounds . Vol. 2, Parts 1 and 2. Patai S. Wiley; New York: 1988
- 1b Thomson RH. Naturally Occurring Quinones IV . Blackie Academic; London: 1997
- 1c Bechtold T. Handbook of Natural Colorants . Vol. 151,18. Bechtold T. Mussak R. Wiley; New York: 2009
- 1d Adeniyi BA. Robert MF. Chai H. Fong HH. Phytother. Res. 2003; 17: 282
- 2a Blazejewski JC. Dorme R. Wakselman C. Synthesis 1985; 1120
- 2b Blazejewski JC. Dorme R. Wakselman C. J. Chem. Soc., Perkin Trans. 1 1987; 1861
- 2c Chen X. Engle KM. Wang DH. Yu JQ. Angew. Chem. Int. Ed. 2009; 48: 5094
- 2d Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
- 3a Dharmaraja AT. Dash TK. Konkimalla VB. Chakrapani H. MedChemComm 2012; 3: 219
- 3b Feroj Hasan AF. M. Furumoto T. Begum S. Fukui H. Phytochemistry 2001; 58: 1225
- 4a Semmelhack MF. Zask A. J. Am. Chem. Soc. 1983; 105: 2034
- 4b Ellestad GA. Whaley HA. Patterson EL. J. Am. Chem. Soc. 1966; 88: 4109
- 4c Ellestad GA. Kunstmann MP. Whaley HA. Patterson EL. J. Am. Chem. Soc. 1968; 90: 1325
- 5 Alake LB. Planta Med. 1994; 60: 477
- 6a Maruo S. Nishio K. Sasamori T. Tokitoh N. Kuramochi K. Tsubaki K. Org. Lett. 2013; 15: 1556
- 6b Uc-Cachón AH. Molina-Salinas GM. Said-Fernández S. Méndez-González M. Cáceres-Farfán M. Borges-Argáez R. Nat. Prod. Res. 2013; 27: 1174
- 7a Wallin R. Sane DC. Hutson SM. Thromb. Res. 2003; 108: 221
- 7b Goodstadt L. Ponting CP. Trends Biochem. Sci. 2004; 29: 289
- 7c Choonara IA. Malia RG. Haynes BP. Hay CR. Cholerton S. Breckenridge AM. Preston FE. Park BK. Br. J. Clin. Pharmacol. 1988; 25: 1
- 8a Sheldon RA. Kochi JK. Metal Catalyzed Oxidations of Organic Compounds . Academic Press; New York: 1981
- 8b Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. 2nd ed. Wiley-VCH; New York: 1999
- 8c Banerjee D. Jagadeesh RV. Junge K. Pohl MM. Radnik J. Brückner A. Beller M. Angew. Chem. Int. Ed. 2014; 53: 4359
- 9a Berkessel A. Guixà M. Schmidt F. Neudörfl JM. Lex J. Chem. Eur. J. 2007; 13: 4483
- 9b Dharmaraja AT. Dash TK. Konkimalla VB. Chakrapani H. MedChemComm 2012; 3: 219
- 10a Yag SG. Hwang JP. Park MY. Lee K. Kim YH. Tetrahedron 2007; 63: 5184
- 10b Arai S. Tsuge H. Oku M. Miura M. Shioiri T. Tetrahedron 2002; 58: 1623
- 10c Snatzke G. Wynberg H. Feringa B. Marsman BG. Greydanus B. Pluim H. J. Org. Chem. 1980; 45: 4094
- 10d Pluim H. Wynberg H. J. Org. Chem. 1980; 45: 2498
- 10e Claessens S. Habonimana P. De Kimpe N. Org. Biomol. Chem. 2010; 8: 3790
- 10f Arai S. Oku M. Miura M. Shioiri T. Synlett 1998; 1201
- 11a Bundu A. Berry NG. Gill CD. Dwyer CL. Stachulski AV. Taylor RJ. Whittall J. Tetrahedron: Asymmetry 2005; 16: 283
- 11b Bunge A. Hamann H.-J. McCalmont E. Liebscher J. Tetrahedron Lett. 2009; 50: 4629
- 11c Lattanzi A. Cocilova M. Iannece P. Scettri A. Tetrahedron: Asymmetry 2004; 15: 3751
- 11d Kośnik W. Bocian W. Kozerski L. Tvaroška I. Chmielewski M. Chem. Eur. J. 2008; 14: 6087
- 11e Dwyer CL. Gill CD. Ichihara O. Taylor RJ. K. Synlett 2000; 704
- 11f Kośnik W. Stachulski AV. Chmielewski M. Tetrahedron: Asymmetry 2005; 16: 1975
- 11g Genski T. Macdonald G. Wei X. Lewis N. Taylor RJ. K. Synlett 1999; 795
- 11h Colonna S. Manfredi A. Annunziata R. Gaggero N. J. Org. Chem. 1990; 55: 5862
- 11i Valderrama JA. Gonzalez MF. Torres C. Heterocycles 2003; 60: 2343
- 12a Wu X.-F. Gong J.-L. Qi X. Org. Biomol. Chem. 2014; 45: 5807
- 12b Saidulu G. Kumar RA. Anitha T. Kumar PS. Reddy KR. Tetrahedron Lett. 2016; 57: 1648
- 13a Wong Y.-C. Tseng C.-T. Kao T.-T. Yeh Y.-C. Shia K.-S. Org. Lett. 2012; 14: 6024
- 13b Jia Z. Nagano T. Li X. Chan AS. C. Eur. J. Org. Chem. 2013; 858
- 13c Yu Y. Jiao L. Wang J. Wang H. Yu C. Hao E. Boens N. Chem. Commun. 2017; 581
- 14a Liu H. Zhai T. Ding S. Hou Y. Zhang X. Feng L. Ma C. Org. Chem. Front. 2016; 3: 1096
- 14b Wang L. Zhu K.-Q. Wu W.-T. Chen Q. He M.-Y. Catal. Sci. Technol. 2015; 5: 2891
- 14c Aruri H. Singh U. Sharma S. Gudup S. Bhogal M. Kumar S. Singh D. Gupta VK. Kant R. Vishwakarma RA. Singh PP. J. Org. Chem. 2015; 80: 1929
- 14d Achar TK. Mal P. J. Org. Chem. 2015; 80: 666
- 14e Yuan Y. Hou W. Zhang-Negrerie D. Zhao K. Du Y. Org. Lett. 2014; 16: 5410
- 14f Liu Z. Zhang J. Chen S. Shi E. Xu Y. Wan X. Angew. Chem. Int. Ed. 2012; 51: 3231
- 14g Rajamanickam S. Majji G. Santra SK. Patel BK. Org. Lett. 2015; 17: 5586
- 15a Zhang S. Guo L.-N. Wang H. Duan X.-H. Org. Biomol. Chem. 2013; 11: 4308
- 15b Guo S. Yu J.-T. Dai Q. Yang H. Cheng J. Chem. Commun. 2014; 6240
- 15c Xue Q. Xie J. Xu P. Hu K. Cheng Y. Zhu C. ACS Catal. 2013; 3: 1365
- 15d Majji G. Rajamanickam S. Khatun N. Santra SK. Patel BK. J. Org. Chem. 2015; 80: 3440
- 16a Wei W. Wen J. Yang D. Guo M. Wang Y. You J. Wang H. Chem. Commun. 2015; 768
- 16b Yu W. Hu P. Fan Y. Yu C. Yan X. Li X. Xu X. Org. Biomol. Chem. 2015; 13: 3308
- 16c Tang Y. Fan Y. Gao H. Li X. Xu X. Tetrahedron Lett. 2015; 56: 5616
- 16d Li X. Xu X. Tang Y. Org. Biomol. Chem. 2013; 11: 1739
- 16e Li X. Xu X. Zhou C. Chem. Commun. 2012; 12240
- 17 Zhang Y. Hu G. Ma D. Xu P. Gao Y. Zhao Y. Chem. Commun. 2016; 2815
- 18a Majji G. Guin S. Gogoi A. Rout SK. Patel BK. Chem. Commun. 2013; 3031
- 18b Liu L. Yun L. Wang Z. Fu X. Yan C.-H. Tetrahedron Lett. 2013; 54: 5383
- 18c Huang J. Li L.-T. Li H.-Y. Husan E. Wang P. Wang B. Chem. Commun. 2012; 10204
- 18d Feng J. Liang S. Chen S.-Y. Zhang J. Fu S.-S. Yu X.-Q. Adv. Synth. Catal. 2012; 354: 1287
- 19a Zhang S. Guo L.-N. Wang H. Duan X.-H. Org. Biomol. Chem. 2013; 11: 4308
- 19b Chen L. Shi E. Liu Z. Chen S. Wei W. Li H. Xu K. Wan X. Chem. Eur. J. 2011; 17: 4085
- 20 Shi E. Shao Y. Chen S. Hu H. Liu Z. Zhang J. Wan X. Org. Lett. 2012; 14: 3384
- 21 Xie J. Jiang H. Cheng Y. Zhu C. Chem. Commun. 2012; 979
- 22 Zhang J. Shao Y. Wang H. Luo Q. Chen J. Xu D. Wan X. Org. Lett. 2014; 16: 3312
- 23 Fujiya A. Tanaka M. Yamaguchi E. Tada N. Itoh A. J. Org. Chem. 2016; 81: 7262
- 24 Nekkanti S. Kumar NP. Sharma P. Kamal A. Nachtigall FM. Forero-Doria O. Santos LS. Shankaraiah N. RSC Adv. 2016; 6: 2671
- 25 Motokura K. Itagaki S. Iwasawa Y. Miyaji A. Baba T. Green Chem. 2009; 11: 1876
- 26 Kondo S. Harada T. Tanaka R. Unno M. Org. Lett. 2006; 8: 4621
- 27 Hardman-Baldwin AM. Mattson AE. ChemSusChem 2014; 7: 3275
- 28a Xu W. Nachtsheim BJ. Org. Lett. 2015; 17: 1585
- 28b Zhang J. Jiang J. Li Y. Zhao Y. Wan X. Org. Lett. 2013; 15: 3222
- 28c Dhineshkumar J. Prabhu KR. Eur. J. Org. Chem. 2016; 447
- 29a Maruyama K. Arakawa S. J. Org. Chem. 1977; 42: 3793
- 29b Arakawa S. J. Org. Chem. 1977; 42: 3800
- 29c Bundu A. Berry NG. Gill CD. Dwyer CL. Stachulski AV. Taylor RJ. K. Whittall J. Tetrahedron: Asymmetry 2005; 16: 283
- 29d Dharmaraja AT. Dash TK. Konkimalla VB. Chakrapani H. MedChemComm 2012; 3: 219
Analytic data for known compounds: