Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(17): 4025-4034
DOI: 10.1055/s-0036-1589036
DOI: 10.1055/s-0036-1589036
paper
Brønsted Acid Catalyzed C3-Alkylation of 2-Indolylmethanols with Azlactones via an Umpolung Strategy
We are grateful for the financial support from NSFC (21372002 and 21232007), PAPD, TAPP and the Undergraduate Student Project of Jiangsu Province.Further Information
Publication History
Received: 28 March 2017
Accepted after revision: 26 April 2017
Publication Date:
20 June 2017 (online)
Abstract
An efficient method for the synthesis of C3-alkylated indoles has been established via Brønsted acid catalyzed alkylation of 2-indolylmethanols with azlactones. The reaction exhibits broad substrate scope and delivers high yields (22 examples, up to 99% yield). This approach not only provides a new strategy for the direct synthesis of C3-alkylated indoles, but also represents a rarely reported alkylation between indole motifs and electron-rich synthons at the C3 position. This protocol serves as a good example of the application of the umpolung strategy in the synthesis of C3-alkylated indoles from 2-indolylmethanols.
Supporting Information
- Supporting information for this article is available online at https://doi.org /10.1055/s-0036-1589036.
- Supporting Information
- CIF File
-
References
- 1 These authors contributed equally to the work.
- 2a Humphrey GR. Kuethe JT. Chem. Rev. 2006; 106: 2875
- 2b Bandini M. Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
- 2c Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
- 2d Wang L. Chen Y.-Y. Xiao J. Asian J. Org. Chem. 2014; 3: 1036
- 3 Usami Y. Yamaguchi J. Numata A. Heterocycles 2004; 63: 1123
- 4 Liu J.-F. Jiang Z.-Y. Wang R.-R. Zeng Y.-T. Chen J.-J. Zhang X.-M. Ma Y.-B. Org. Lett. 2007; 9: 4127
- 5a Pereira E. Youssef A. El-Ghozzi M. Avignant D. Bain J. Prudhomme M. Anizon F. Moreau P. Tetrahedron Lett. 2014; 55: 834
- 5b Subba Reddy BV. Rajeswari N. Sarangapani M. Prashanthi Y. Ganji RJ. Addlagatta A. Bioorg. Med. Chem. Lett. 2012; 22: 2460
- 5c Kamal A. Srikanth YV. V. Khan MN. A. Shaik TB. Ashraf M. Bioorg. Med. Chem. Lett. 2010; 20: 5229
- 5d Paira P. Hazra A. Kumar S. Paira R. Sahu KB. Naskar S. Saha P. Mondal S. Maity A. Banerjee S. Mondal NB. Bioorg. Med. Chem. Lett. 2009; 19: 4786
- 5e Wang Y. Tang X. Shao Z. Ren J. Liu D. Proksch P. Lin W. J. Antibiot. 2014; 67: 395
- 6a Cacchi S. Fabrizi G. Chem. Rev. 2005; 105: 2873
- 6b Shiri M. Chem. Rev. 2012; 112: 3508
- 6c Bandini M. Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
- 6d Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
- 6e Zeng M. You S.-L. Synlett 2010; 1289
- 6f Szatmari I. Sas J. Fulop F. Curr. Org. Chem. 2016; 20: 2038
- 7 Lakhdar S. Westermaier M. Terrier F. Goumont R. Boubaker T. Ofial AR. Mayr H. J. Org. Chem. 2006; 71: 9088
- 8a Bandini M. Melloni A. Piccinelli F. Sinisi R. Tommasi S. Umani-Ronchi A. J. Am. Chem. Soc. 2006; 128: 1424
- 8b Feng B. Pu X.-Y. Liu Z.-C. Xiao W.-J. Chen J.-R. Org. Chem. Front. 2016; 3: 1246
- 8c Rueping M. Nachtsheim BJ. Moreth SA. Bolte M. Angew. Chem. Int. Ed. 2008; 47: 593
- 8d Zeng M. Kang Q. Kang Q. He Q.-L. You S.-L. Adv. Synth. Catal. 2008; 350: 2169
- 8e Dong H.-M. Lu H.-H. Lu L.-Q. Chen C.-B. Xiao W.-J. Adv. Synth. Catal. 2007; 349: 1597
- 8f Kang Q. Zhao Z.-A. You S.-L. J. Am. Chem. Soc. 2007; 129: 1484
- 9 Bandini M. Org. Biomol. Chem. 2013; 11: 5206
- 10a Klussmann M. Sureshkumar D. Synthesis 2011; 353
- 10b Yeung SC. Dong VM. Chem. Rev. 2011; 111: 1215
- 10c Girard SA. Knauber T. Li CJ. Angew. Chem. Int. Ed. 2014; 53: 74
- 11a Palmieri A. Petrini M. Shaikh RR. Org. Biomol. Chem. 2010; 8: 1259
- 11b Wang L. Chen Y. Xiao J. Asian J. Org. Chem. 2014; 3: 1036
- 11c Zhu S. Xu L. Wang L. Xiao J. Youji Huaxue 2016; 36: 1229
- 11d Dai W. Lu H. Li X. Shi F. Tu S.-J. Chem. Eur. J. 2014; 20: 11382
- 11e Tan W. Li X. Gong Y.-X. Ge M.-D. Shi F. Chem. Commun. 2014; 15901
- 11f Tan W. Du B.-X. Li X. Zhu X. Shi F. Tu S.-J. J. Org. Chem. 2014; 79: 4635
- 11g Shi F. Zhang H.-H. Sun X.-X. Liang J. Fan T. Tu S.-J. Chem. Eur. J. 2015; 21: 3465
- 11h Jiang F. Zhang Y.-C. Yang X. Zhu Q.-N. Shi F. Synlett 2016; 27: 575
- 12a Fu T.-H. Bonaparte A. Martin S.-F. Tetrahedron Lett. 2009; 50: 3253
- 12b Zhong X. Li Y. Han F.-S. Chem. Eur. J. 2012; 18: 9784
- 12c Zhong X. Qi S. Li Y. Zhang J. Han F.-S. Tetrahedron 2015; 71: 3734
- 12d Qi S. Liu C.-Y. Ding J.-Y. Han F.-S. Chem. Commun. 2014; 8605
- 12e Liu C.-Y. Han F.-S. Chem. Commun. 2015; 11844
- 13a Balczewski P. Bodzioch A. Rozycka-Sokolowska E. Marciniak B. Uznanski P. Chem. Eur. J. 2010; 16: 2392
- 13b Granger B.-A. Jewett I.-T. Butler J.-D. Hua B. Knezevic C.-E. Parkinson E.-I. Hergenrother P.-J. Martin S.-F. J. Am. Chem. Soc. 2013; 135: 12984
- 13c Yokosaka T. Nakayama H. Nemoto T. Hamada Y. Org. Lett. 2013; 15: 2978
- 13d Yokosaka T. Kanehira T. Nakayama H. Nemoto T. Hamada Y. Tetrahedron 2014; 70: 2151
- 13e Zhong X. Li Y. Zhang J. Zhang W.-X. Wang S.-X. Han F.-S. Chem. Commun. 2014; 11181
- 13f Zhong X. Li Y. Zhang J. Han F.-S. Org. Lett. 2015; 17: 720
- 13g Cao K.-S. Bian H.-X. Zheng W.-H. Org. Biomol. Chem. 2015; 13: 6449
- 13h Bera K. Schneider C. Chem. Eur. J. 2016; 22: 7074
- 13i Bera K. Schneider C. Org. Lett. 2016; 18: 5660
- 14a Gong Y.-X. Wu Q. Zhang H.-H. Zhu Q.-N. Shi F. Org. Biomol. Chem. 2015; 13: 7993
- 14b Sun X.-X. Zhang H.-H. Li G.-H. He Y.-Y. Shi F. Chem. Eur. J. 2016; 22: 17526
- 14c Zhu Z.-Q. Shen Y. Sun X.-X. Tao J.-Y. Liu J.-X. Shi F. Adv. Synth. Catal. 2016; 358: 3797
- 14d Li C. Zhang H.-H. Fan T. Shen Y. Wu Q. Shi F. Org. Biomol. Chem. 2016; 14: 6932
- 14e He Y.-Y. Sun X.-X. Li G.-H. Mei G.-J. Shi F. J. Org. Chem. 2017; 82: 2462
- 14f Zhang H.-H. Wang C.-S. Li C. Mei G.-J. Li Y. Shi F. Angew. Chem. Int. Ed. 2017; 56: 116
- 14g Zhu Z.-Q. Shen Y. Liu J.-X. Tao J.-Y. Shi F. Org. Lett. 2017; 19: 1542
- 15a Fisk JS. Mosey RA. Tepe JJ. Chem. Soc. Rev. 2007; 36: 1432
- 15b Tepe J. Hewlett N. Hupp C. Synthesis 2009; 2825
- 15c Alba AN. Rios R. Chem. Asian J. 2011; 6: 720
- 15d de Castro PP. Carpanez AG. Amarante GW. Chem. Eur. J. 2016; 22: 10294
- 16a Yu X.-Y. Chen J.-R. Wei Q. Cheng H.-G. Liu Z.-C. Xiao W.-J. Chem. Eur. J. 2016; 22: 6774
- 16b Fisk JS. Tepe JJ. J. Am. Chem. Soc. 2007; 129: 3058
- 16c Yamanaka M. Sakata K. Yoshioka K. Uraguchi D. Ooi T. J. Org. Chem. 2017; 82: 541
- 16d Kikuchi J. Momiyama N. Terada M. Org. Lett. 2016; 18: 2521
- 17 Zhang Y.-C. Zhu Q.-N. Yang X. Zhou L.-J. Shi F. J. Org. Chem. 2016; 81: 1681
- 18 CCDC 1540646 (4aa) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 19a Akiyama T. Chem. Rev. 2007; 107: 5744
- 19b Terada M. Chem. Commun. 2008; 4097
- 19c Terada M. Synthesis 2010; 1929
- 19d Yu J. Shi F. Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
- 19e Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2014; 114: 9047
- 19f Wu H. He Y.-P. Shi F. Synthesis 2015; 47: 1990
For selected reviews, see:
For selected reviews, see:
For selected examples, see:
For related reviews, see:
For related reviews, see:
For some examples from our group, see:
For substitutions of 2-indolylmethanol, see:
For cyclizations of 2-indolylmethanol, see:
For selected reviews, see:
For selected examples, see:
For some reviews, see: