Synthesis 2018; 50(02): 384-390
DOI: 10.1055/s-0036-1589114
paper
© Georg Thieme Verlag Stuttgart · New York

Mild, Efficient, and Regioselective Synthesis of Diiodophenyl­boronic Acid Derivatives via Metal–Iodine Exchange of 5-Substituted 1,2,3-Triiodoarenes

Raed M. Al-Zoubi*
a   Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan   Email: rmzoubi@just.edu.jo
,
Abdellatif Ibdah
a   Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan   Email: rmzoubi@just.edu.jo
,
Walid K. Al-Jammal
a   Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan   Email: rmzoubi@just.edu.jo
,
Mazhar S. Al-Zoubi
b   Department of Biology, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
,
a   Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan   Email: rmzoubi@just.edu.jo
,
Robert McDonald
c   Department of Chemistry, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
› Author Affiliations
This work was generously funded by the Scientific Research Support Fund of Jordan (www.srf.gov.jo, Grant No. Bas/2/04/2013 for R.M.A.) and Jordan University of Science and Technology (JUST).
Further Information

Publication History

Received: 26 July 2017

Accepted after revision: 11 September 2017

Publication Date:
11 October 2017 (online)


Abstract

Unique 2,6-diiodophenylboronic acid and 2,3-diiodophenylboronic acid derivatives have been synthesized via regioselective metal–iodine exchange (MIE) of 5-substituted 1,2,3-triiodoarenes. The regio­selectivity of the reaction per se is remarkably controlled by the nature of the C5 substituent providing the desired diiodophenylboronic acids in moderate to good yields and with high site selectivity. The diiodophenylboronic acids were then examined for in vitro antimicrobial activity against four strains of bacteria Micrococcus luteus (ATCC 9341), Bacillus cereus (ATCC 11778), Escherichia coli (ATCC 25922), and Serratia marcescens (ATCC 27117) and one fungal strain Candida albicans using well diffusion assay and dilution method. It indicated that 5-fluoro-2,3-diiodophenylboronic acid possesses the most potent antibacterial and antifungal activity with MIC of 2.6 mg/mL for M. luteus and C. albicans. This report discloses a one-step protocol to access hitherto unknowns 2,6-diiodophenylboronic acid and 2,3-diiodophenylboronic acid derivatives that is scalable, good in scope, no chromatography is needed, and these compounds are difficult to prepare by other means.

Supporting Information

 
  • References and Notes

    • 2a Al-Zoubi RM. Hall DG. Org. Lett. 2010; 12: 2480
    • 2b Al-Zoubi RM. Marion O. Hall DG. Angew. Chem. Int. Ed. 2008; 47: 2876
    • 2c Gernigon N. Al-Zoubi RM. Hall DG. J. Org. Chem. 2012; 77: 8386
    • 2d Marcelli T. Angew. Chem. Int. Ed. 2010; 49: 6840
  • 3 Zimmermann TJ. Buerger M. Tashiro E. Kondoh Y. Martinez NE. Goermer K. Rosin-Steiner S. Shimizu T. Ozaki S. Mikoshiba K. Watanabe N. Hall D. Vetter IR. Osada H. Hedberg C. Waldmann H. ChemBioChem 2013; 14: 115
  • 4 Akama T. Jarnagin K. Plattner JJ. Pulley SR. White WH. Zhang Y.-K. Zhou Y. WO 2014149793, 2014 ;160
    • 5a Butler MS. Cooper MA. J. Antibiot. 2011; 64: 413
    • 5b Rock FL. Mao W. Yaremchuk A. Tukalo M. Crépin T. Zhou H. Zhang YK. Hernandez V. Akama T. Baker SJ. Plattner JJ. Shapiro L. Martinis SA. Benkovic SJ. Cusack S. Alley MR. K. Science (Washington, D. C.) 2007; 316: 1759
    • 5c Revill P. Bolós J. Serradell N. Drugs Future 2006; 31: 667
    • 5d Kumar S. Kimball AB. Expert Opin. Invest. Drugs 2009; 18: 727
    • 6a Adams J. Drug Discovery Today 2003; 8: 307
    • 6b Adams J. Curr. Opin. Chem. Biol. 2002; 6: 493
    • 6c Adams J. Behnke M. Chen S. Cruickshank AA. Dick LR. Grenier L. Klunder JM. Ma YT. Plamondon L. Stein RL. Bioorg. Med. Chem. Lett. 1998; 8: 333
    • 6d McCormack T. Baumeister W. Grenier L. Moomaw C. Plamondon L. Pramanik B. Slaughter C. Soucy F. Stein R. Zuhl F. Dick L. J. Biol. Chem. 1997; 272: 26103
    • 6e Hansen MM. Jolly RA. Linder RJ. Org. Process Res. Dev. 2015; 19: 1507
    • 6f Glinka T. Higuchi R. Hecker S. Eastman B. Rodny O. WO 2012109164, 2013 ; 149
    • 6g O’Donovan MR. Mee CD. Fenner S. Teasdale A. Phillips DH. Mutat. Res., Genet. Toxicol. Environ. Mutagen. 2011; 724: 1
    • 7a Lu Y. Wang K. Ishihara K. Asian J. Org. Chem. 2017; 6: 1191
    • 7b Imperio D. Del Grosso E. Fallarini S. Lombardi G. Panza L. Org. Lett. 2017; 19: 1678
    • 7c Wang J. Zhang Y. ACS Catal. 2016; 6: 4871
    • 7d Ishihara K. Lu Y. Chem. Sci. 2016; 7: 1276
    • 7e Ricardo CL. Mo X. McCubbin JA. Hall DG. Chem. Eur. J. 2015; 21: 4218
    • 7f Mohy El Dine T. Erb W. Berhault Y. Rouden J. Blanchet J. J. Org. Chem. 2015; 80: 4532
    • 7g Adamczyk-Woźniak A. Ejsmont K. Gierczyk B. Kaczorowska E. Matuszewska A. Schroeder G. Sporzyński A. Zarychta B. J. Organomet. Chem. 2015; 788: 36
    • 7h Gu L. Lim J. Cheong JL. Lee SS. Chem. Commun. 2014; 50: 7017
    • 7i Goswami SV. Thorat PB. Shukla MV. Bhusare SR. Res. Chem. Intermed. 2015; 41: 2583
    • 7j Dimitrijevic E. Taylor MS. ACS Catal. 2013; 3: 945
    • 7k Hall D. Gernigon N. Al-Zoubi R. Thornton PD. WO 2012109749, 2012 ; 86
    • 7l Charville H. Jackson D. Hodges G. Whiting A. Chem. Commun. 2010; 46: 1813
    • 7m Hall D. Marion O. Al-Zoubi R. WO 2009030022, 2009 ; 34
    • 7n Georgiou I. Ilyashenko G. Whiting A. Acc. Chem. Res. 2009; 42: 756
    • 7o Arnold K. Davies B. Hérault D. Whiting A. Angew. Chem. Int. Ed. 2008; 47: 2673
    • 7p Arnold K. Batsanov AS. Davies B. Whiting A. Green Chem. 2008; 10: 124
    • 7q Batsanov AS. Hérault D. Howard JA. K. Patrick LG. F. Probert MR. Whiting A. Organometallics 2007; 26: 2414
    • 7r Arnold K. Davies B. Giles RL. Grosjean C. Smith GE. Whiting A. Adv. Synth. Catal. 2006; 348: 813
  • 8 Blanksby SJ. Ellison GB. Acc. Chem. Res. 2003; 36: 255
    • 9a Sämann C. Haag B. Knochel P. Chem. Eur. J. 2012; 18: 16145
    • 9b Teclechiel D. Sundström M. Marsh G. Chemosphere 2009; 74: 421
    • 9c Menzel K. Mills PM. Frantz DE. Nelson TD. Kress MH. Tetrahedron Lett. 2008; 49: 415
    • 9d Menzel K. Fisher EL. DiMichele L. Frantz DE. Nelson TD. Kress MH. J. Org. Chem. 2006; 71: 2188
    • 9e Menzel K. Dimichele L. Mills P. Frantz DE. Nelson TD. Kress MH. Synlett 2006; 1948
    • 9f DiMichele L. Menzel K. Mills P. Frantz D. Nelson T. Magn. Reson. Chem. 2006; 44: 1041
    • 9g Cottet F. Castagnetti E. Schlosser M. Synthesis 2005; 798
    • 9h Mongin F. Marzi E. Schlosser M. Eur. J. Org. Chem. 2001; 2771
    • 9i Du CJ. F. Hart H. Ng KK. D. J. Org. Chem. 1986; 51: 3162
    • 9j Bunnett JF. Victor RR. J. Am. Chem. Soc. 1968; 90: 810
    • 10a See ref 7m
    • 10b Al-Zoubi RM. Al-Mughaid H. Al-Zoubi MA. Jaradat KT. McDonald R. Eur. J. Org. Chem. 2015; 5501
    • 10c Al-Zoubi RM. Al-Zoubi MS. Abazid AH. McDonald R. Asian J. Org. Chem. 2015; 4: 359
    • 10d Al-Zoubi RM. Al-Mughaid H. McDonald R. Aust. J. Chem. 2015; 68: 912
    • 10e Al-Zoubi RM. Futouh HA. McDonald R. Aust. J. Chem. 2013; 66: 1570
    • 10f Cvengroš J. Stolz D. Togni A. Synthesis 2009; 2818
    • 11a Lin W. Sapountzis I. Knochel P. Angew. Chem. Int. Ed. 2005; 44: 4258
    • 11b Dąbrowski M. Kubicka J. Luliński S. Serwatowski J. Tetrahedron 2005; 61: 6590
    • 11c Wickham PP. Hazen KH. Guo H. Jones G. Reuter KH. Scott WJ. J. Org. Chem. 1991; 56: 2045
  • 12 Tofi M. Georgiou T. Montagnon T. Vassilikogiannakis G. Org. Lett. 2005; 7: 3347
    • 13a Mothana S. Grassot JM. Hall DG. Angew. Chem. Int. Ed. 2010; 49: 2883
    • 13b Mothana S. Chahal N. Vanneste S. Hall DG. J. Comb. Chem. 2007; 9: 193
  • 14 CCDC-1557926 and 1557927 contain the supplementary crystallographic data for compounds 17B and 19B , respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 15a MacLowry JD. Jaqua MJ. Selepak ST. Appl. Microbiol. 1970; 20: 46
    • 15b Smaill F. Can J. Gastroenterology 2000; 14: 871