Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(03): 663-675
DOI: 10.1055/s-0036-1589132
DOI: 10.1055/s-0036-1589132
paper
Studies on the Total Synthesis of Antibiotic Macrolactin S: A Conventional Approach for the Synthesis of the C1–C9 and C10–C24 Fragments
S.R. thanks UGC, New Delhi for financial support. The authors thank CSIR, New Delhi, for funding through the XII Five-Year Plan Programme under budget head CSC-0108.Further Information
Publication History
Received: 27 August 2017
Accepted after revision: 18 October 2017
Publication Date:
16 November 2017 (online)
Abstract
The C1–C9 and C10–C24 segments of the 24-membered polyene macrolide macrolactin S were synthesized by routes involving an epoxide-ring-opening reaction, an Ohira–Bestmann alkyne formation, a chelation-controlled nucleophilic addition reaction, and a Still–Gennari olefination as key steps. A chiron approach , starting from readily available glucose diacetonide, was used to synthesize a key intermediate, and a convergent approach was adopted for the synthesis of the key C10–C24 fragment.
Key words
macrolides - polyenes - antibiotics - total synthesis - Julia olefination - Ohira–Bestmann reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1589132.
- Supporting Information
-
References
- 1a Pereira RB. Andrade PB. Valentão P. Mar. Drugs 2016; 14: 1
- 1b Blunt JW. Copp BR. Keyzers RA. Munro MH. Prinsep MR. Nat. Prod. Rep. 2015; 32: 116
- 1c Newmann DJ. Cragg GM. J. Nat. Prod. 2012; 75: 311
- 1d Martins A. Vieira H. Gaspar H. Santos S. Mar. Drugs 2014; 12: 1066
- 2 Lu XL. Xu QZ. Shen YH. Liu XY. Jiao BH. Zhang WD. Ni KY. Nat. Prod. Res. 2008; 22: 342
- 3a Yadav JS. Raj Kumar M. Sabitha G. Tetrahedron Lett. 2008; 49: 463
- 3b Yadav JS. Gupta MK. Prathap I. Synthesis 2007; 1343
- 3c Kobayashi Y. Fukuda A. Kimachi T. Ju-ichi M. Takemoto Y. Tetrahedron Lett. 2004; 45: 677
- 3d Li S. Xu R. Bai D. Tetrahedron Lett. 2000; 41: 3463
- 3e Boyce RJ. Pattenden G. Tetrahedron Lett. 1996; 37: 3501
- 4a Marino JP. McClure MS. Holub DP. Comasseto JV. Tucci FC. J. Am. Chem. Soc. 2002; 124: 1664
- 4b Kim Y. Singer RA. Carreira EM. Angew. Chem. Int. Ed. 1998; 37: 1261
- 4c Smith AB. III. Ott GR. J. Am. Chem. Soc. 1998; 120: 3935
- 4d Smith AB. III. Ott GR. J. Am. Chem. Soc. 1996; 118: 13095
- 5a Sankara Rao P. Srihari P. Org. Biomol. Chem. 2016; 14: 9629
- 5b Yadav JS. Suresh B. Srihari P. Eur. J. Org. Chem. 2016; 2509
- 5c Yadav JS. Suresh B. Srihari B. Eur. J. Org. Chem. 2015; 5856
- 5d Sridhar Y. Srihari P. Org. Biomol. Chem. 2014; 12: 2950
- 5e Yadav JS. Singh VK. Srihari P. Org. Lett. 2014; 16: 836
- 5f Sridhar P. Srihari P. Org. Biomol. Chem. 2013; 11: 4640
- 5g Sridhar Y. Srihari P. Eur. J. Org. Chem. 2013; 578
- 6 Yadav JS. Prathap I. Tadi BP. Tetrahedron Lett. 2006; 47: 3773
- 7 Still WC. McDonald JH. III. Tetrahedron Lett. 1980; 21: 1031
- 8 Hoye TR. Jeffrey CS. Shao F. Nat. Protoc. 2007; 2: 2451
- 9 Dess DB. Martin JC. J. Am. Chem. Soc. 1991; 113: 7277
- 10a Yamaguchi M. Hirao I. Tetrahedron Lett. 1983; 24: 391
- 10b Sharma GV. M. Mallesham S. Chandra Mouli C. Tetrahedron: Asymmetry 2009; 20: 2513
- 11a Jacobi PA. Guo J. Rajeswari S. Zheng W. J. Org. Chem. 1997; 62: 2907
- 11b Rollin P. Tetrahedron Lett. 1986; 27: 4169
- 12 Blakemore PR. J. Chem. Soc., Perkin Trans. 1 2002; 2563 ; Our attempts without HMPA resulted in a 1:1 mixture of diastereomers
- 13a Müller S. Liepold B. Bestmann JJ. Synlett 1996; 521
- 13b Roth G. Liepold B. Müller S. Bestmann HJ. Synthesis 2004; 59
- 15 Zhang HX. Buibe F. Balavoine G. J. Org. Chem. 1990; 55: 1857
- 16 Although total consumption of the starting material was observed, we ended up with the acetonide-deprotected compound rather than the required iodinated compound.
- 17 Reddy CR. Suman D. Rao NN. Helv. Chim. Acta 2015; 98: 967
- 18 The product was difficult to isolate, as a number of spots appeared on the TLC.