Subscribe to RSS
DOI: 10.1055/s-0036-1590873
Asymmetric Desymmetrization of Substituted Cyclohexadienones by Rhodium-Catalyzed Conjugate Hydrosilylation and Theoretical Calculations of Its Mechanistic Aspects
This research was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Nos. 15H03808 and 15K21063).Publication History
Received: 08 June 2017
Accepted after revision: 19 July 2017
Publication Date:
15 August 2017 (online)
Abstract
Asymmetric desymmetrization was demonstrated by means of transition-metal-catalyzed conjugate reduction with hydrosilanes as reductants. Chiral rhodium-bis(oxazolinyl)phenyl complexes [Rh(Phebox-R)] were found to be effective catalysts for conjugate hydrosilylation of differently γ,γ-disubstituted cyclohexadienones to provide the corresponding product with chiral quaternary centers. The mechanistic consideration was also performed by theoretical calculation. These attempts provided information about i) the initial activation of Rh(III) complex into Rh(I) species assisted by hydrosilanes, ii) the complete catalytic cycle, and iii) an explanation of the asymmetric induction and the difference of the structure of cyclohexadienones in enantioselectivity.
Key words
asymmetric synthesis - desymmetrization - quaternary center - rhodium - hydrosilane - conjugate reduction - computational studySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590873.
- Supporting Information
-
References
- 1 Willis MC. J. Chem. Soc., Perkin Trans. 1 1999; 1765
- 2a Zeng X.-P. Cao Z.-Y. Wang Y.-H. Zhou F. Zhou J. Chem. Rev. 2016; 116: 7330
- 2b Peterson KS. Tetrahedron Lett. 2015; 56: 6523
- 3a Fuji K. Chem. Rev. 1993; 93: 2037
- 3b Christoffers J. Mann A. Angew. Chem. Int. Ed. 2001; 40: 4591
- 3c Cozzi PG. Hilgraf R. Zimmermann N. Eur. J. Org. Chem. 2007; 5969
- 3d Bella M. Gasperi T. Synthesis 2009; 1583
- 3e Quasdorf KW. Overman LE. Nature 2014; 516: 181
- 3f Corey EJ. Guzman-Perez A. Angew. Chem. Int. Ed. 1998; 37: 388
- 3g Douglas CJ. Overman LE. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5363
- 3h Trost BM. Jiang C. Synthesis 2006; 369
- 4a Hong AY. Stoltz BM. Eur. J. Org. Chem. 2013; 2745
- 4b Peterson EA. Overman LE. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 11943
- 4c Horwitz MA. Johnson JS. Eur. J. Org. Chem. 2017; 1381
- 5 Imbos R. Brilman MH. G. Pineschi M. Feringa BL. Org. Lett. 1999; 1: 623
- 6 Hayashi Y. Gotoh H. Tamura T. Yamaguchi H. Masui R. Shoji M. J. Am. Chem. Soc. 2005; 127: 16028
- 7 Gu Q. You S.-L. Chem. Sci. 2011; 2: 1519
- 8 Du J.-Y. Zeng C. Han X.-J. Qu H. Zhao X.-H. An X.-T. Fan C.-A. J. Am. Chem. Soc. 2015; 137: 4267
- 9 Yao L. Liu K. Tao H.-Y. Qiu G.-F. Zhou X. Wang C.-J. Chem. Commun. 2013; 49: 6078
- 10 Miyamae N. Watanabe N. Moritaka M. Nakano K. Ichikawa Y. Kotsuki H. Org. Biomol. Chem. 2014; 12: 5847
- 11 Takagi R. Nishi T. Org. Biomol. Chem. 2015; 13: 11039
- 12 Chauhan P. Mahajan S. Kaya U. Valkonen A. Rissanen K. Enders D. Adv. Synth. Catal. 2016; 358: 3173
- 13a Ito J.-i. Nishiyama H. Synlett 2012; 23: 509
- 13b Nishiyama H. Ito J.-i. Chem. Commun. 2010; 46: 203
- 14a Kanazawa Y. Tsuchiya Y. Kobayashi K. Shiomi T. Ito J.-i. Kikuchi M. Yamamoto Y. Nishiyama H. Chem. Eur. J. 2006; 12: 63
- 14b Itoh K. Tsuruta A. Ito J.-i. Yamamoto Y. Nishiyama H. J. Org. Chem. 2012; 77: 10914
- 15 Naganawa Y. Kawagishi M. Ito J.-i. Nishiyama H. Angew. Chem. Int. Ed. 2016; 55: 6873
- 16 Han Y. Breitler S. Zheng S.-L. Corey EJ. Org. Lett. 2016; 18: 6172
- 17 Kress S. Johnson T. Weisshar F. Lautens M. ACS Catal. 2016; 6: 747
- 18 Liu T.-L. Ng TW. Zhao Y. J. Am. Chem. Soc. 2017; 139: 3643
- 19 Inokoishi Y. Sasakura N. Nakano K. Ichikawa Y. Kotsuki H. Org. Lett. 2010; 12: 1616
- 20 Smith LK. Baxendale IR. Org. Biomol. Chem. 2015; 13: 9907
- 21 CCDC-1548477 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 22 Yang Y.-F. Shi T. Zhang X.-H. Tang Z.-X. Wen Z.-Y. Quan J.-M. Wu Y.-D. Org. Biomol. Chem. 2011; 9: 5845
- 23 For details of optimized structures, see the Supporting Information.
- 24 Crombie L. Tuchinda P. Powell MJ. J. Chem. Soc., Perkin Trans. 1 1982; 1477
- 25 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Scalmani G. Barone V. Mennucci B. Petersson GA. Nakatsuji H. Caricato M. Li X. Hratchian HP. Izmaylov AF. Bloino J. Zheng G. Sonnenberg JL. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Vreven T. Montgomery JA. Peralta JE. Ogliaro F. Bearpark MJ. Heyd J. Brothers EN. Kudin KN. Staroverov VN. Keith T. Kobayashi R. Normand J. Raghavachari K. Rendell AP. Burant JC. Iyengar SS. Tomasi J. Cossi M. Rega N. Millam JM. Klene M. Knox JE. Cross JB. Bakken V. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Martin RL. Morokuma K. Zakrzewski VG. Voth GA. Salvador P. Dannenberg JJ. Dapprich S. Daniels AD. Farkas Ö. Foresman JB. Ortiz JV. Cioslowski J. Fox DJ. Gaussian 09, Revision D.01 . Gaussian Inc; Wallingford USA: 2013