Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(24): 5364-5370
DOI: 10.1055/s-0036-1590895
DOI: 10.1055/s-0036-1590895
paper
Recycled Pd/C-Catalyzed Heck Reaction of 2-Iodoanilines under Ligand-Free Conditions
The work was supported by the Youth Science and Technology Talent Development Project in the Education Department of Guizhou Province (Grant No.qianjiaohe KY zi [2016] number 263) and by the Innovation Team of Liupanshui Normal University (Grant No. LPSSYKJTD201601).Further Information
Publication History
Received: 27 June 2017
Accepted after revision: 07 August 2017
Publication Date:
28 August 2017 (online)
Abstract
Recyclable Pd/C-catalyzed Heck reaction of 2-iodoanilines with acrylate has been developed. The reaction occurred readily in 1,4-dioxane using Pd/C (10 wt%) as catalyst under ligand-free conditions, and the cross-coupling products were obtained with medium to high yield. Gram-scale reactions and recycling of the catalyst were also demonstrated.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590895.
- Supporting Information
-
References
- 1 Cherney AH. Kadunce NT. Reisman SE. Chem. Rev. 2015; 115: 9587
- 2a Tietze LF. Nobel T. Spescha M. J. Am. Chem. Soc. 1998; 120: 8971
- 2b Dounay AB. Overman LE. Chem. Rev. 2003; 103: 2945
- 2c Kwok TJ. Virgilio JA. Org. Process Res. Dev. 2005; 9: 694
- 2d Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
- 2e Martins A. Marquardt U. Kasravi N. Alberico D. Lautens M. J. Org. Chem. 2006; 71: 4937
- 2f Cvetovich RJ. Reamer RA. DiMichele L. Chung JY. L. Chilenski JR. J. Org. Chem. 2006; 71: 8610
- 2g Guthrie DB. Geib SJ. Curran DP. J. Am. Chem. Soc. 2009; 131: 15492
- 2h Brovetto M. Gamenara D. Mendez PS. Seoane GA. Chem. Rev. 2011; 111: 4346
- 2i Pires MJ. D. Poeira PD. L. Purificação SI. Marques MM. B. Org. Lett. 2016; 18: 3250
- 2j Azcargorta AR. Coya E. Barbolla I. Lete E. Sotomayor N. Eur. J. Org. Chem. 2016; 2054
- 2k Donatoni MC. Vieira YW. Brocksom TJ. Rabelo AC. Leite ER. de Oliveira KT. Tetrahedron Lett. 2016; 57: 3016
- 2l Debnath S. Malakar S. Mondal S. Synthesis 2016; 48: 3544
- 3a Gimbert C. Vallribera A. Org. Lett. 2009; 11: 269
- 3b Omote M. Tanaka M. Tanaka M. Ikeda A. Tarui A. Sato K. Ando A. J. Org. Chem. 2013; 78: 6196
- 4 Herrmann WA. Brossmer C. Ofele K. Reisinger C.-P. Priermeier T. Beller M. Fischer H. Angew. Chem., Int. Ed. Engl. 1995; 34: 1844
- 5 Satyanarayana G. Helmchen G. Eur. J. Org. Chem. 2014; 2242
- 6 Martinez R. Voica F. Genet J.-P. Darses S. Org. Lett. 2007; 9: 3213
- 7 Liu C. Tang S. Liu D. Yuan J. Zheng L. Meng L. Lei A. Angew. Chem. Int. Ed. 2012; 51: 3638
- 8 Nacci VC. A. Monopoli A. Ieva E. Cioffi N. Org. Lett. 2005; 7: 617
- 9 Tian J. Moeller KD. Org. Lett. 2005; 7: 5381
- 10a Carmichael AJ. Earle MJ. Holbrey JD. McCormac PB. Seddon KR. Org. Lett. 1999; 1: 997
- 10b Vallin KS. A. Emilsson P. Larhed M. Hallberg A. J. Org. Chem. 2002; 67: 6243
- 10c Selvakumar K. Zapf A. Beller M. Org. Lett. 2002; 4: 3031
- 10d Chandrasekhar S. Narsihmulu C. Sultana SS. Reddy NR. Org. Lett. 2002; 4: 4399
- 10e Mo J. Xu L. Xiao J. J. Am. Chem. Soc. 2005; 127: 751
- 10f Li S. Lin Y. Xie H. Zhang S. Xu J. Org. Lett. 2006; 8: 391
- 10g Xu H.-J. Zhao Y.-Q. Zhou X.-F. J. Org. Chem. 2011; 76: 8036
- 11a Lapierre AJ. B. Geib SJ. Curran DP. J. Am. Chem. Soc. 2007; 129: 494
- 11b Oestreich M. Angew. Chem. Int. Ed. 2014; 53: 2282
- 11c Yue G. Lei K. Hirao H. Zhou JS. Angew. Chem. Int. Ed. 2015; 54: 6531
- 12a Beccalli EM. Broggini G. Martinelli M. Sottocornola S. Chem. Rev. 2007; 107: 5318
- 12b Lipshutz BH. Taft BR. Org. Lett. 2008; 10: 1329
- 12c Bras JL. Muzart J. Chem. Rev. 2011; 111: 1170
- 12d He Z. Kirchberg S. Frçhlich R. Studer A. Angew. Chem. Int. Ed. 2012; 51: 3699
- 12e Izawa Y. Zheng C. Stahl SS. Angew. Chem. Int. Ed. 2013; 52: 3672
- 13a Littke AF. Fu GC. J. Am. Chem. Soc. 2001; 123: 6989
- 13b Mino T. Shirae Y. Sasai Y. Sakamoto M. Fujita T. J. Org. Chem. 2006; 71: 6834
- 13c Muthumari S. Mohan N. Ramesh R. Tetrahedron Lett. 2015; 56: 4170
- 13d Sperger T. Stirner CK. Schoenebeck F. Synthesis 2017; 49: 115
- 14a Beletskaya IP. Cheprakov AV. Chem. Rev. 2000; 100: 3009
- 14b Hajiwara H. Shimizu Y. Hoshi T. Suzuki T. Ando M. Ohkubo K. Yokoyama C. Tetrahedron Lett. 2001; 42: 4349
- 14c Hamza K. Abu-Reziq R. Avnir D. Blum J. Org. Lett. 2004; 6: 925
- 14d Perosa A. Tundo P. Selva M. Zinovyev S. Testa A. Org. Biomol. Chem. 2004; 2: 2249
- 14e Xie X. Lu J. Chen B. Han J. She X. Pan X. Tetrahedron Lett. 2004; 45: 809
- 14f Dahan A. Portnoy M. Org. Lett. 2005; 5: 1197
- 14g Yin L. Liebscher J. Chem. Rev. 2007; 107: 133
- 14h Jiang X. Sclafani J. Prasad K. Repic O. Blacklock TJ. Org. Process Res. Dev. 2007; 11: 769
- 14i Lipshutz BH. Taft BR. Org. Lett. 2008; 10: 1329
- 14j Schils D. Stappers F. Solberghe G. van Heck R. Coppens M. van den Heuvel D. van der Donck P. Callewaert T. Meeussen F. Org. Process Res. Dev. 2008; 12: 530
- 14k Niembro S. Shafir A. Vallribera A. Alibes R. Org. Lett. 2008; 10: 3215
- 14l Borja G. Monge-Marcet A. Pleixats R. Parella T. Cattoën X. Man MW. C. Eur. J. Org. Chem. 2012; 3625
- 14m Liu W. Wang D. Duan Y. Zhang Y. Bian F. Tetrahedron Lett. 2015; 56: 1784
For the application of Heck reaction, see:
For Heck reaction in green solvents, see:
For asymmetric Heck reactions, see:
For oxidative Heck reactions, see:
For the palladium catalysis system applied in Heck reactions, see:
For Heck reaction under heterogeneous catalysis, see: