Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(21): 4775-4782
DOI: 10.1055/s-0036-1590912
DOI: 10.1055/s-0036-1590912
special topic
Developing a Bench-Scale Green Diboration Reaction toward Industrial Application
Further Information
Publication History
Received: 12 August 2017
Accepted after revision: 28 August 2017
Publication Date:
10 October 2017 (online)
Dedicated to Prof. Maria Elena Fernandez and Prof. Carles Bo, our scientific parents
Published as part of the Special Topic Modern Strategies for Borylation in Synthesis
Abstract
We report a new methodology for the organocatalytic diboration reaction using inexpensive, sustainable, nontoxic, commercially available halogen salts. This is an educative manuscript for the transformation of laboratory scale reactions into a sustainable approach of appeal to industry.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590912.
- Supporting Information
-
References
- 1a Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Hall DG. Wiley-VCH; Weinheim: 2006
- 1b Synthesis and Application of Organoboron Compounds, Topics in Organometallic Chemistry 49. Fernández E. Whiting A. Springer; Switzerland: 2015
- 1c Mkhalid IA. I. Barnard JH. Marder TB. Murphy JM. Hartwig JF. Chem. Rev. 2010; 110: 890
- 1d Neeve EC. Geier SJ. Mkhalid IA. I. Westcott SA. Marder TB. Chem. Rev. 2016; 116: 9091
- 2a Lee K.-s. Zhugralin AR. Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 7253
- 2b Lee K.-s. Zhugralin AR. Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 12766
- 2c Kleeberg C. Crawford AG. Batsanov AS. Hodgkinson P. Apperley DC. Cheung MS. Lin Z. Marder TB. J. Org. Chem. 2012; 77: 785
- 2d Bonet A. Gulyás H. Fernández E. Angew. Chem. Int. Ed. 2010; 49: 5130
- 2e Bonet A. Pubill-Ulldemolins C. Bo C. Gulyás H. Fernández E. Angew. Chem. Int. Ed. 2011; 50: 7158
- 2f Bonet A. Solé C. Gulyás H. Fernández E. Org. Biomol. Chem. 2012; 10: 6621
- 2g Pubill-Ulldemolins C. Bonet A. Bo C. Gulyás H. Fernández E. Chem. Eur. J. 2012; 18: 1121
- 2h Sanz X. Lee GM. Pubill-Ulldemolins C. Bonet A. Gulyás H. Westcott SA. Bo C. Fernández E. Org. Biomol. Chem. 2013; 11: 7004
- 2i Zhang JM. Wu HH. Zhang JL. Eur. J. Org. Chem. 2013; 6263
- 2j Blaisdell TP. Caya TC. Zhang L. Sanz-Marco A. Morken JP. J. Am. Chem. Soc. 2014; 136: 9264
- 2k Pietsch S. Neeve EC. Apperley DC. Bertermann R. Mo F. Qiu D. Cheung MS. Dang L. Wang J. Radius U. Lin Z. Kleeberg C. Marder TB. Chem. Eur. J. 2015; 21: 7082
- 2l Zheng J. Wang Y. Li ZH. Wang H. Chem. Commun. 2015; 51: 5505
- 2m Yoshimura A. Takamachi Y. Han L. Ogawa A. Chem. Eur. J. 2015; 21: 13930
- 2n Miralles N. Alam R. Szabó KJ. Fernández E. Angew. Chem. Int. Ed. 2016; 55: 4303
- 2o Fang L. Yan L. Haeffner F. Morken JP. J. Am. Chem. Soc. 2016; 138: 2508
- 2p Yanga K. Song Q. Green Chem. 2016; 18: 932
- 2q Gao M. Thorpe SB. Santos WL. Org. Lett. 2009; 11: 3478
- 2r Cid J. Carbó JJ. Fernández E. Chem. Eur. J. 2014; 20: 3616
- 2s Cuenca AB. Cid J. García-López D. Carbó JJ. Fernández E. Org. Biomol. Chem. 2015; 13: 9659
- 2t Miralles N. Cid J. Cuenca AB. Carbó JJ. Fernández E. Chem. Commun. 2015; 51: 1693
- 2u Kojima C. Lee K. Lin Z. Yamashita M. J. Am. Chem. Soc. 2016; 138: 6662
- 2v Farre A. Soares K. Briggs RA. Balanta A. Benoit DM. Bonet A. Chem. Eur. J. 2016; 22: 17552
- 3a Dewhurst RD. Neeve EC. Braunschweig H. Marder TB. Chem. Commun. 2015; 51: 9594
- 3b Cid J. Gulyás H. Carbó JJ. Fernández E. Chem. Soc. Rev. 2012; 41: 3558
- 4a Dehmlow EV. Dehmlow SS. Phase Transfer Catalysis. VCH; Weinheim: 1993. 3rd ed
- 4b Starks M. Liotta CL. Halpern M. Phase-Transfer Catalysis. Chapman & Hall; New York: 1994
- 4c Sasson Y. Neumann R. Handbook of Phase-Transfer Catalysis. Blackie Academic & Professional; London: 1997
- 4d Phase-Transfer Catalysis Mechanisms and Synthesis, ACS Symposium Series 659. Halpern ME. American Chemical Society; Washington D.C.: 1997
- 4e Liu S. Kumatabara Y. Shirakawa S. Green Chem. 2016; 18: 331
- 5 Price obtained from the Sigma Aldrich website (22/09/2016) for a 100 g bottle: TBAF·H2O £233.50, TBACl £164.50, TBABr £55.00, TBAI £28.40.
- 6 McMurry JE. Organic Chemistry with Biological Applications. Cengage Learning; Stanford USA: 2015: 394
- 7 McElroy CR. Constantinou A. Jones LC. Summerton L. Clark JH. Green Chem. 2015; 17: 3111
- 8 Hargreaves, C. R.; Manley, J. B. ACS GCI Pharmaceutical Roundtable, Collaboration to Deliver a Solvent Selection Guide for the Pharmaceutical Industry; https://www.acs.org/content/dam/acsorg/greenchemistry/industriainnovation/roundtable/solvent-selection-guide.pdf (accessed 03/11/2016).
- 9a Jiménez-González C. Constable DJ. C. Ponder CS. Chem. Soc. Rev. 2012; 41: 1485
- 9b Raymond MJ. Slater CS. Savelski MJ. Green Chem. 2010; 12: 1826
- 9c Prat D. Hayler J. Wells A. Green Chem. 2014; 16: 4546
- 10 Organic Reactions in Water. Lindstrom UM. Wiley-Blackwell; Oxford: 2007
- 11a Chea H. Sim HS. Yun J. Bull. Korean Chem. Soc. 2010; 31: 551
- 11b Thorpe SB. Calderone JA. Santos WL. Org. Lett. 2012; 14: 1918
- 11c Molander GA. McKee SA. Org. Lett. 2011; 13: 4684
- 11d Kitanosono T. Xu P. Kobayashi S. Chem. Asian J. 2014; 9: 179
- 11e Kitanosono T. Xu P. Kobayashi S. Chem. Commun. 2013; 49: 8184
- 11f Stavber G. Casar Z. Appl. Organomet. Chem. 2013; 27: 159
- 12 Jovanović J. Rebrov EV. Nijhuis TA. Hessel V. Schouten JC. Ind. Eng. Chem. Res. 2010; 49: 2681
- 13 Trost BM. Science 1991; 254: 1471
- 14a Constable DJ. C. Curzons AD. Cunningham VL. Green Chem. 2002; 4: 521
- 14b Andraos J. Org. Process Res. Dev. 2005; 9: 149
- 14c Andraos J. Org. Process Res. Dev. 2005; 9: 404
- 15a Mlynarski SN. Schuster CH. Morken JP. Nature 2014; 505: 386
- 15b Bonet A. Gulyás H. Koshevoy IO. Estevan F. Sanaú M. Ubeda MA. Fernández E. Chem. Eur. J. 2010; 16: 6382
- 16 Comparing 100 g Alfa Aesar branded bottles from http://www.fishersci.com/ (02/11/2016): NaI 99.5% purity $58.37, MePPh3I 98% purity $141.11.
- 17 Hargreaves CR. Crafts P. (AstraZeneca, Macclesfield, UK) Reducing the energy burden of active pharmaceutical manufacture. Presented at the 11th Annual Green Chemistry and Engineering Conference, Washington, DC, June 26-29, 2007; poster 104.
- 18a Stymiest JL. Bagutski V. French RM. Aggarwal VK. Nature 2008; 456: 778
- 18b Schmidt F. Keller F. Vedrenne E. Aggarwal VK. Angew. Chem. Int. Ed. 2009; 48: 1149
- 18c Dutheuil G. Webster MP. Worthington PA. Aggarwal VK. Angew. Chem. Int. Ed. 2009; 48: 6317
- 18d Althaus M. Mahmood A. Ramón Suárez J. Thomas SP. Aggarwal VK. J. Am. Chem. Soc. 2010; 132: 4025
- 18e Watson CG. Balanta A. Elford TG. Essafi S. Harvey JN. Aggarwal VK. J. Am. Chem. Soc. 2014; 136: 17370
- 18f Burns M. Essafi S. Bame JR. Bull SP. Webster MP. Balieu S. Dale JW. Butts CP. Harvey JN. Aggarwal VK. Nature 2014; 513: 183
- 18g Fawcett A. Nitsch D. Ali M. Bateman JM. Myers EL. Aggarwal VK. Angew. Chem. Int. Ed. 2016; 55: 14663
- 19a Nguyen P. Dai C. Taylor NJ. Power WP. Marder TB. Pickett NL. Norman NC. Inorg. Chem. 1995; 34: 4290
- 19b Clegg W. Dai CJ. Lawlor F. Marder TB. Nguyen P. Norman NC. Pickett NL. Power WP. Scott AJ. J. Chem. Soc., Dalton Trans. 1997; 839
- 19c Cade IA. Chau WY. Vitorica-Yrezabal I. Ingleson MJ. Dalton Trans. 2015; 44: 7506
- 20 All calculations were carried out by using the Gaussian 09 program, Revision D.01; see the Supporting Information for full details.
- 21 Zhao Y. Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
For examples of the transition-metal-free activation of diboronic esters, see:
For a complete review of sp2–sp3 boryl chemistry, see:
For reviews of phase-transfer catalysis, see:
For examples of consecutive reactions using catechol diborated intermediates, see:
For some representative examples of lithiation–borylation, see: