Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(03): 658-662
DOI: 10.1055/s-0036-1590944
DOI: 10.1055/s-0036-1590944
paper
First Total Synthesis of (±)-Rhodoconferimide
Further Information
Publication History
Received: 24 August 2017
Accepted after revision: 05 October 2017
Publication Date:
06 November 2017 (online)
Abstract
Starting from vanillin and dimethyl maleate, a concise and efficient racemic total synthesis of the potent antioxidant marine natural product (±)-rhodoconferimide has been carried out via the Wittig reaction, catalytic hydrogenation, selective brominations, and imide formation. An appropriate regioselective double bromination of the aromatic ring was a key step in the synthesis.
Key words
vanillin - bromination - (±)-rhodoconferimide - antioxidants - natural products - total synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590944. NMR spectra of all the synthesized compounds are included.
- Supporting Information
-
References
- 1 Barja G. Trends Neurosci. 2004; 27: 595
- 2 Esterbauer H. Wäg G. Puhl H. Br. Med. Bull. 1993; 49: 566
- 3 Harman D. Radiat. Res. 1962; 16: 753
- 4 Maxwell SR. J. Lip GY. H. Br. J. Clin. Pharmacol. 1997; 44: 307
- 5 Wolff SP. Br. Med. Bull. 1993; 49: 642
- 6 Conner EM. Grisham MB. Nutrition 1996; 12: 274
- 7 Zweier JL. Talukder MA. H. Cardiovasc. Res. 2006; 70: 181
- 8 Coyle JT. Puttfarcken P. Science 1993; 262: 689
- 9 Firuzi O. Miri R. Tavakkoli M. Saso L. Curr. Med. Chem. 2011; 18: 3871
- 10 Rice-Evans CA. Diplock AT. Free Radical Biol. Med. 1993; 15: 77
- 11 André C. Castanheira I. Cruz JM. Paseiro P. Sanches-Silva A. Trends Food Sci. Technol. 2010; 21: 229
- 12 Grillo CA. Dulout FN. Mutat. Res. 1995; 345: 73
- 13 Ito N. Hirose M. Fukushima S. Tsuda H. Shirai T. Tatematsu M. Food Chem. Toxicol. 1986; 24: 1071
- 14 Bonilla F. Mayen M. Merida J. Medina M. Food Chem. 1999; 66: 209
- 15 Konczak I. Zabaras D. Dunstan M. Aguas P. Food Chem. 2010; 122: 260
- 16 Kurihara H. Mitani T. Kawabata J. Takahashi K. J. Nat. Prod. 1999; 62: 882
- 17 Mudnic I. Modun D. Rastija V. Vukovic J. Brizic I. Katalinic V. Kozina B. Medic-Saric M. Boban M. Food Chem. 2010; 119: 1205
- 18 Duan X.-J. Zhang W.-W. Li X.-M. Wang B.-G. Food Chem. 2006; 95: 37
- 19 Li K. Li X.-M. Ji N.-Y. Wang B.-G. Bioorg. Med. Chem. 2007; 15: 6627
- 20 Li K. Li X.-M. Ji N.-Y. Wang B.-G. J. Nat. Prod. 2008; 71: 28
- 21 Duan X.-J. Li X.-M. Wang B.-G. J. Nat. Prod. 2007; 70: 1210
- 22 Li K. Li X.-M. Ji N.-Y. Gloer JB. Wang B.-G. Org. Lett. 2008; 10: 1429
- 23 Ma M. Zhao J. Wang S. Li S. Yang Y. Shi J. Fan X. He L. J. Nat. Prod. 2007; 70: 337
- 24 Zhao J. Fan X. Wang S. Li S. Shang S. Yang Y. Xu N. Lu Y. Shi J. J. Nat. Prod. 2004; 67: 1032
- 25 Wang B.-G. Zhang W.-W. Duan X.-J. Li X.-M. Food Chem. 2009; 113: 1101
- 26 Li K. Li X.-M. Gloer JB. Wang B.-G. Food Chem. 2012; 135: 868
- 27 Li K. Li X.-M. Gloer JB. Wang B.-G. J. Agric. Food Chem. 2011; 59: 9916
- 28 Shelar SV. Argade NP. ACS Omega 2017; 2: 3945
- 29 Mondal P. Argade NP. Org. Biomol. Chem. 2016; 14: 10394
- 30 Markad SB. Argade NP. J. Org. Chem. 2016; 81: 5222
- 31 The noticed consistent minor differences in the chemical shifts of all signals in the 1H NMR data of the natural product are plausibly due to the error in picking up the correct signal for DMSO. As reported for the natural product, if the signal for the aromatic proton is locked at δ = 6.96 ppm, all chemical shift values match correctly (please see the 1H NMR data SI-19 and SI-20 in the Supporting Information).
- 32 Baell JB. J. Nat. Prod. 2016; 79: 616