Synthesis 2018; 50(09): 1914-1920
DOI: 10.1055/s-0036-1591541
paper
© Georg Thieme Verlag Stuttgart · New York

Convenient and Inexpensive Route to Sulfonylated Pyridines via SNAr Reaction of Electron-Rich Pyridines by Iron Catalysis

Fei Chen
a   Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O. H4B 1R6, Montréal, QC, Canada   Email: pat.forgione@concordia.ca
,
Franklin Chacón-Huete
a   Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O. H4B 1R6, Montréal, QC, Canada   Email: pat.forgione@concordia.ca
,
Hassan El-Husseini
a   Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O. H4B 1R6, Montréal, QC, Canada   Email: pat.forgione@concordia.ca
,
Pat Forgione*
a   Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O. H4B 1R6, Montréal, QC, Canada   Email: pat.forgione@concordia.ca
b   Centre for Green Chemistry and Catalysis, Montréal, QC, Canada
› Author Affiliations
This work was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada and Le Fonds de Recherche Nature et technologies du Québec (FQRNT). Support was also kindly provided by Centre for Green Chemistry and Catalysis (CGCC), and Concordia University.
Further Information

Publication History

Received: 27 November 2017

Accepted after revision: 12 January 2017

Publication Date:
20 February 2018 (online)


Abstract

Sulfonylated pyridines were synthesized in moderate to excellent yields, with a wide scope of substituted pyridines and sulfinate salts as starting materials, by an iron-catalyzed SNAr reaction. This new methodology exhibits advantages for the synthesis of these useful substrates, such as the use of a readily available, inexpensive catalyst, prevention of the disproportionation of the sulfinate salts, and, more importantly, providing access to electron-rich pyridine substrates.

Supporting Information

 
  • References

  • 1 Current address: Agilent Technologies, 2250 Boul. Alfred Nobel St-Laurent, QC, H4S 2C9.
  • 2 Sturino CF. O’Neill G. Lachance N. Boyd M. Berthelette C. Labelle M. Li L. Roy B. Scheigetz J. Tsou N. Aubin Y. Bateman KP. Chauret N. Day SH. Lévesque J.-F. Seto C. Silva JH. Trimble LA. Carriere M.-C. Denis D. Greig G. Kargman S. Lamontagne S. Mathieu M.-C. Sawyer N. Slipetz D. Abraham WM. Jones T. McAuliffe M. Piechuta H. Nicoll-Griffith DA. Wang Z. Zamboni R. Young RN. Metters KM. J. Med. Chem. 2007; 50: 794
  • 3 Trost BM. Shen HC. Surivet J.-P. J. Am. Chem. Soc. 2004; 126: 12565
  • 4 Artico M. Silvestri R. Pagnozzi E. Bruno B. Novellino E. Greco G. Massa S. Ettorre A. Loi AG. Scintu F. La Colla P. J. Med. Chem. 2000; 43: 1886
  • 5 Kochi T. Noda S. Yoshimura K. Nozaki K. J. Am. Chem. Soc. 2007; 129: 8948
  • 6 Wei X.-L. Wang YZ. Long SM. Bobeczko C. Epstein AJ. J. Am. Chem. Soc. 1996; 118: 2545
  • 7 Padmavathi V. Thriveni P. Reddy GS. Deepti D. Eur. J. Med. Chem. 2008; 43: 917
  • 8 Ladduwahetty T. Gilligan M. Humphries A. Merchant KJ. Fish R. Mcalister G. Ivarsson M. Dominguez M. O’Connor D. Macleod AM. Bioorg. Med. Chem. Lett. 2010; 20: 3708
  • 9 Hussain I. Yawer MA. Lalk M. Lindequist U. Villinger A. Fischer C. Langer P. Bioorg. Med. Chem. 2008; 16: 9898
  • 10 Hartz RA. Arvanitis AG. Arnold C. Rescinito JP. Hung KL. Zhang G. Wong H. Langley DR. Gilligan PJ. Trainor GL. Bioorg. Med. Chem. Lett. 2006; 16: 934
  • 11 Hull KL. Anani WQ. Sanford MS. J. Am. Chem. Soc. 2006; 128: 7134
  • 12 Kalyani D. Dick AR. Anani WQ. Sanford MS. Org. Lett. 2006; 8: 2523
  • 13 Chu J.-H. Tsai S.-L. Wu M.-J. Synthesis 2009; 3757
  • 14 Baslé O. Bidange J. Shuai Q. Li C.-J. Adv. Synth. Catal. 2010; 352: 1145
  • 15 García-Rubia A. Fernández-Ibáñez M. Á. Gómez Arrayás R. Carretero JC. Chem. Eur. J. 2011; 17: 3567
  • 16 Richter H. Beckendorf S. Mancheño OG. Adv. Synth. Catal. 2011; 353: 295
  • 17 Zhang X.-G. Dai H.-X. Wasa M. Yu J.-Q. J. Am. Chem. Soc. 2012; 134: 11948
  • 18 Trankle WG. Kopach ME. Org. Process Res. Dev. 2007; 11: 913
  • 19 Scalone M. Waldmeier P. Org. Process Res. Dev. 2003; 7: 418
  • 20 Yang D. Yip Y.-C. Jiao G.-S. Wong M.-K. J. Org. Chem. 1998; 63: 8952
  • 21 Guo S.-R. Yuan Y.-Q. Synlett 2011; 2750
  • 22 Srinivas BT. V. Rawat VS. Konda K. Sreedhar B. Adv. Synth. Catal. 2014; 356: 805
  • 23 Zou J. Li F. Tao FG. Chin. Chem. Lett. 2009; 20: 17
  • 24 Maloney KM. Kuethe JT. Linn K. Org. Lett. 2011; 13: 102
  • 25 Cacchi S. Fabrizi G. Goggiamani A. Parisi LM. Bernini R. J. Org. Chem. 2004; 69: 5608
  • 26 Zhu W. Ma D. J. Org. Chem. 2005; 70: 2696
  • 27 Kar A. Sayyed IA. Lo WF. Kaiser HM. Beller M. Tse MK. Org. Lett. 2007; 9: 3405
  • 28 Huang F. Batey RA. Tetrahedron 2007; 63: 7667
  • 29 Ulman A. Urankar E. J. Org. Chem. 1989; 54: 4691
  • 30 Chen X. Engle KM. Wang D.-H. Yu J.-Q. Angew. Chem. Int. Ed. 2009; 121: 5196
  • 31 Kice JL. Guaraldi G. Venier CG. J. Org. Chem. 1966; 31: 3561
  • 32 Nam W. Acc. Chem. Res. 2015; 48: 2415
  • 33 Sahu S. Goldberg DP. J. Am. Chem. Soc. 2016; 138: 11410
  • 34 Mukherjee A. Cranswick MA. Chakrabarti M. Paine TK. Fujisawa K. Münck E. Que L. Inorg. Chem. 2010; 49: 3618