Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(06): 1238-1245
DOI: 10.1055/s-0036-1591747
DOI: 10.1055/s-0036-1591747
feature
SYNTHESIS–SYNLETT Lecture: Toward the Asymmetric Synthesis of Tetrapetalone A: Preparation of an Enantioenriched Indane Intermediate and Strategy for Endgame Glycosylation
We thank the NIH (NIGMS R01 GM079364, supporting P.C.) and NSF (CHE-1565813, supporting E.S.) for funding this work.Further Information
Publication History
Received: 13 October 2017
Accepted after revision: 08 December 2017
Publication Date:
05 January 2018 (online)
Abstract
A chiral auxiliary is employed to obtain, via Nazarov cyclization, a synthetic intermediate crucial to our previously reported synthesis of the tetrapetalone A core. This indane derivative, corresponding to the A and B rings of the tetrapetalone natural product skeleton, is then used to test an endgame strategy for installation of the β-rhodinosyl group on ring B. A palladium-catalyzed decarboxylative coupling is described that effects the exclusive formation of the desired β-glycosidic linkage, and the target rhodinose moiety can be obtained via hydrogenation.
Key words
natural products - tetrapetalone A - Nazarov cyclization - diastereoselectivity - enantioselectivity - glycosylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591747.
- Supporting Information
-
References
- 1 Komoda T. Sugiyama Y. Abe N. Imachi M. Hirota H. Hirota A. Tetrahedron Lett. 2003; 44: 1659
- 2 Komoda T. Sugiyama Y. Abe N. Imachi M. Hirota H. Koshino H. Hirota A. Tetrahedron Lett. 2003; 44: 7417
- 3 Prigge ST. Boyington JC. Gaffney BJ. Amzel LM. Proteins Struct. Funct. Genet. 1996; 24: 275
- 4 Salmon JA. Higgs GA. Br. Med. Bull. 1987; 43: 285
- 5a Marcus A. Sarpong R. Org. Lett. 2010; 12: 4560
- 5b Marcus A. Lee A. Davis R. Tantillo D. Sarpong R. Angew. Chem. Int. Ed. 2008; 47: 6379
- 5c Wang X. Porco JJr. Angew. Chem. Int. Ed. 2005; 44: 3067
- 5d Li C. Li X. Hong R. Org. Lett. 2009; 11: 4036
- 5e Weaver MG. Bai WJ. Jackson SK. Pettus RR. Org. Lett. 2014; 16: 1294
- 5f Dhanjee H. Kobayashi Y. Buergler J. McMahon T. Haley M. Howell J. Fujiwara K. Wood JL. J. Am. Chem. Soc. 2017; 139: 14901
- 6 Carlsen PN. Mann TJ. Hoveyda AH. Frontier AJ. Angew. Chem. Int. Ed. 2014; 53: 9334
- 7a He W. Sun X. Frontier AJ. J. Am. Chem. Soc. 2003; 125: 14278
- 7b He W. Meracz IR. Atesin TA. Caruana PA. Kellenberger CA. Frontier AJ. J. Am. Chem. Soc. 2008; 130: 1003
- 8 For a review, see: Shimada N. Stewart C. Tius MA. Tetrahedron 2011; 67: 5851
- 9a Kerr DJ. White JM. Flynn BL. J. Org. Chem. 2010; 75: 7073
- 9b Kerr DJ. Miletic M. Chaplin JH. White JM. Flynn BL. Org. Lett. 2012; 14: 1732
- 10 Molander GA. Katona BW. Machrouhi F. J. Org. Chem. 2002; 67: 8416
- 11 Jouvin K. Couty F. Evano G. Org. Lett. 2010; 12: 3272
- 12a Zhang X. Zhang Y. Huang J. Hsung RP. Kurtz KC. M. Oppenheimer J. Petersen ME. Sagamanova IK. Shen L. Tracey MR. J. Org. Chem. 2006; 71: 4170
- 12b Jin X. Yamaguchi K. Mizuno N. Chem. Commun. 2012; 48: 4974
- 13 The er of indane 16 was measured as 97:3 by SFC (see the Supporting Information). This indicates that even though 14a was the only isomer detected by 1H NMR after recrystallization, complete separation of 14a and 14b was not achieved.
- 14 Sobti A. Kim K. Sulikowski GA. J. Org. Chem. 1996; 61: 6
- 15 Roush WR. Bennett CE. Roberts SE. J. Org. Chem. 2001; 66: 6389
- 16 Adachi S. Watanabe K. Iwata Y. Kameda S. Miyaoka Y. Onozuka M. Mitsui R. Saikawa Y. Nakata M. Angew. Chem. Int. Ed. 2013; 52: 2087
- 17 Drager G. Garming A. Maul C. Noltemeyer M. Thiericke R. Zerlin M. Kirschning A. Chem. Eur. J. 1998; 4: 1324
- 18 McDonald FE. Zhu HY. H. J. Am. Chem. Soc. 1998; 120: 4246
- 19a Xiang S. Lu Z. He J. MaiHoang KL. Zeng J. Liu X.-W. Chem. Eur. J. 2013; 19: 14047
- 19b Kim H. Men H. Lee C. J. Am. Chem. Soc. 2004; 126: 1336
- 19c Babu RS. O’Doherty G. J. Am. Chem. Soc. 2003; 125: 12406
- 20 During the preparation of this manuscript, Wood and co-workers reported the total synthesis of tetrapetalones A and C including the installation of the rhodinose moiety using a palladium-catalyzed coupling (ref. 5f).
- 21 Xiang S. He J. Tan YJ. Liu X.-W. J. Org. Chem. 2014; 79: 11473
- 22 Durham TB. Roush WR. Org. Lett. 2003; 5: 1871
- 23 Compounds 19a and 19b could not be separated completely and pure fractions after chromatography were characterized. Likewise, 20a and 20b could not be separated completely and pure fractions after chromatography were characterized.
- 24 Brown JM. Naik RG. J. Chem. Soc., Chem. Commun. 1982; 348
- 25 Harmon R. Gupta S. Brown D. Chem. Rev. 1973; 73: 21 ; and references cited therein
- 26a van Tamelen EE. Dewey R. Timmons R. J. Am. Chem. Soc. 1961; 83: 3725
- 26b van Tamelen EE. Dewey R. Lease M. Pirkle W. J. Am. Chem. Soc. 1961; 83: 4302
- 26c Corey EJ. Pasto J. Mock W. J. Am. Chem. Soc. 1961; 83: 2957
- 26d Spears G. Hutchinson J. J. Chem. Phys. 1988; 88: 240
- 27a Mori K. Ohki M. Sato A. Matsui M. Tetrahedron 1972; 28: 3739
- 27b Hoffman MJr. Schlessinger R. J. Chem. Soc., Chem. Commun. 1971; 1245
- 27c Roberts R. Schüll V. Paquette L. J. Org. Chem. 1983; 48: 2076
- 28 Corey EJ. Mock WL. Pasto DJ. Tetrahedron Lett. 1961; 347
- 29a Dewey RS. van Tamelen EE. J. Am. Chem. Soc. 1961; 83: 3729
- 29b Hünig S. Müller HR. Thier W. Tetrahedron Lett. 1961; 353
- 30a Imada Y. Iida H. Naota T. J. Am. Chem. Soc. 2005; 127: 14544
- 30b Smit C. Fraaije M. Minnaard A. J. Org. Chem. 2008; 73: 9482
- 30c Imada Y. Kitagawa T. Ohno T. Iida H. Naota T. Org. Lett. 2010; 12: 32
- 30d Imada Y. Iida H. Kitagawa T. Naota T. Chem. Eur. J. 2011; 17: 5908
- 30e Teichert J. Hartog T. Hanstein M. Smit C. Horst B. Hernandez-Olmos V. Feringa B. Minnaard A. ACS Catal. 2011; 1: 309