Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(06): 1259-1263
DOI: 10.1055/s-0036-1591750
DOI: 10.1055/s-0036-1591750
paper
Experimental and Theoretical Study of the Reaction Kinetics of 2,5-Dimethylterephthalonitrile Bromination Compared to 1,4-Dimethylbenzene Bromination
We thank the Capes and CNPq for financial support.Further Information
Publication History
Received: 30 November 2017
Accepted after revision: 01 December 2017
Publication Date:
29 January 2018 (online)
Abstract
Experimental and theoretical studies showed the differences observed in the benzylic tetrabromination reactions in 2,5-dimethylterephthalonitrile compared to 1,4-dimethylbenzene. It was observed that the compound containing the nitrile substituent underwent a slower bromination reaction, with the formation of four intermediate compounds, while for the compound without substituents, the reaction was faster and only two intermediate compounds were observed.
Key words
bromination reactions - 1,4-dimethylbenzene - 2,5-dimethylterephthalonitrile - α,α,α′,α′-tetrabromide-p-xylene - α,α,α′,α′-tetrabromide-2,5-dicyano-p-xyleneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591750.
- Supporting Information
-
References
- 1 Lee S. Ra CS. Clean Technol. 2016; 22: 269
- 2 Jakhar K. Makrandi JK. Green Chem. Lett. Rev. 2008; 1: 219
- 3 Forsch RA. Wright JE. Rosowsky A. Bioorg. Med. Chem. 2002; 10: 2067
- 4 Paul V. Sudalai A. Daniel T. Srinivasan KV. Tetrahedron Lett. 1994; 35: 7055
- 5 Ventosa-Andrés P. González-Vera JA. Bioorg. Med. Chem. 2008; 16: 9313
- 6 Raju T. Kulangiappar K. Korean J. Chem. Eng. 2014; 31: 365
- 7 Alimenla B. Kumar A. Jamir L. Sinha D. Sinha UB. Acta Chim. Slov. 2009; 56: 457
- 8 Podgoršek A. Stavber S. Zupan M. Iskra J. Tetrahedron Lett. 2006; 47: 1097
- 9 Kürti L. Czakó B. Strategic Applications of Named Reactions in Organic Synthesis. Elsevier Academic Press; San Diego: 2005: 758
- 10 Manzoor AM. George G. Ramalingam S. Periandy S. Gokukakrishnan V. J. Mol. Struct. 2016; 1106: 37
- 11 Kin T. Park S. Electrochimica Acta 2005; 50: 1461
- 12 Garcia JR. Gehlen MH. de Oliveira HP. M. Nart FC. J. Braz. Chem. Soc. 2008; 19: 1678
- 13 Xie W. Li Y. Li F. Shen F. Ma Y. Appl. Phys. Lett. 2007; 90: 141110
- 14 Glendening ED. Landis CR. Weinhold F. WIREs Comput. Mol. Sci. 2012; 2: 1
- 15 Foresman JB. Frisch Æ. Exploring Chemistry with Electronic Structure Methods . Gaussian Inc; Pittsburgh: 1996. 2nd ed.
- 16 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Scalmani G. Barone V. Mennucci B. Petersson GA. Nakatsuji H. Caricato M. Li X. Hratchian HP. Izmaylov AF. Bloino J. Zheng G. Sonnenberg JL. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Vreven T. Montgomery JA. Peralta JrJ. E. Ogliaro F. Bearpark M. Heyd JJ. Brothers E. Kudin KN. Staroverov VN. Kobayashi R. Normand J. Raghavachari K. Rendell A. Burant JC. Iyengar SS. Tomasi J. Cossi M. Rega N. Millam JM. Klene M. Knox JE. Cross JB. Bakken V. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Martin RL. Morokuma K. Zakrzewski VG. Voth GP. Dannenberg J. Dapprich S. Daniels AD. Farkas Ö. Foresman JB. Ortiz JV. Cioslowski J. Fox DJ. Gaussian 09 revision b.01. Gaussian Inc; Wallingford CT: 2009
- 17 Reed AE. Glendening ED. Badenhoop JK. Carpenter JE. Bohmann JA. Morales CM. Weinhold F. NBO 5.9. Theoretical Chemistry Institute, University of Wisconsin; Madison: 2011. http://www.chem.wisc.edu/~nbo5
- 18 Zhao Y. Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
- 19 Krishnan R. Binkley JS. Seeger R. Pople JA. J. Chem. Phys. 1980; 72: 650
- 20 Zhao Y. Truhlar DG. Acc. Chem. Res. 2008; 41: 157
- 21 Jensen JH. Molecular Modeling Basics . CRC Press; Boca Raton: 2010