Synthesis 2018; 50(08): 1728-1736
DOI: 10.1055/s-0036-1591757
paper
© Georg Thieme Verlag Stuttgart · New York

Coupling of N-Nosylhydrazones with Nitrosoarenes: Transition-Metal-Free Approach to (Z)-N-Arylnitrones

Tingting Liu
a   School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, 1035 Shuobo Road, 130117 Changchun, P. R. of China   Email: hudonghua8888@gmail.com
,
Zhaohong Liu
d   Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024 Changchun, P. R. of China
,
c   College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhuadong Road 250014 Jinan, P. R. of China
,
Donghua Hu
a   School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, 1035 Shuobo Road, 130117 Changchun, P. R. of China   Email: hudonghua8888@gmail.com
,
Yeming Wang
b   Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, 399 Zhuoyue Street, 130103 Changchun, P. R. of China   Email: wangyeming2011@163.com
› Author Affiliations
Further Information

Publication History

Received: 27 November 2017

Accepted after revision: 03 January 2018

Publication Date:
05 February 2018 (online)


Abstract

An efficient and transition-metal-free protocol for the synthesis of (Z)-N-arylnitrones from the direct coupling of N-nosylhydrazones with nitrosoarenes under mild conditions is described. The protocol is compatible with a wide range of functional groups placed on both the reagents and provided the corresponding nitrones in good to excellent yields by simple recrystallization process. The use of these 1,3-dipoles for the synthesis of substituted indoles is elaborated for 2,3-diphenyl-1H-indole.

Supporting Information

 
  • References


    • For selected examples of [3+2] cycloaddition involving nitrone, see:
    • 2a Shi Y. Lin A. Mao H. Mao Z. Li W. Hu H. Zhu C. Cheng Y. Chem. Eur. J. 2013; 19: 1914
    • 2b Jiao P. Nakashima D. Yamamoto H. Angew. Chem. Int. Ed. 2008; 47: 2411
    • 2c Nakashima D. Yamamoto H. J. Am. Chem. Soc. 2006; 128: 9626
    • 2d Palomo C. Oiarbide M. Arceo E. Garcia JM. Lopez R. Gonzalez A. Angew. Chem. Int. Ed. 2005; 44: 6187
    • 2e Sibi MP. Ma Z.-H. Jasperse CP. J. Am. Chem. Soc. 2004; 126: 718
    • 3a Anderson LL. Asian J. Org. Chem. 2016; 5: 9
    • 3b Zhang Z.-M. Chen P. Li W. Niu Y. Zhao X.-L. Zhang J. Angew. Chem. Int. Ed. 2014; 53: 4350
    • 3c Nakamura I. Jo T. Zhang D. Terada M. Org. Chem. Front. 2014; 1: 914
    • 3d Mo D.-L. Anderson LL. Angew. Chem. Int. Ed. 2013; 52: 6722
    • 3e Yeom H.-S. Shin S. Acc. Chem. Res. 2014; 47: 966
    • 3f Yeom H.-S. Lee Y. Lee J.-E. Shin S. Org. Biomol. Chem. 2009; 7: 4744
    • 3g Yeom H.-S. Lee Y. Jeong J. So E. Hwang S. Lee J.-E. Lee SS. Shin S. Angew. Chem. Int. Ed. 2010; 49: 1611
    • 3h Pati K. Liu R.-S. Chem. Commun. 2009; 5233
    • 3i Nakamura I. Okamoto M. Sato Y. Terada M. Angew. Chem. Int. Ed. 2012; 51: 10816
    • 3j Gawade SA. Bhunia S. Liu R.-S. Angew. Chem. Int. Ed. 2012; 51: 7835
    • 3k Mo D.-L. Wink DJ. Anderson LL. Chem. Eur. J. 2014; 20: 13217
    • 4a Yao T. Ren B. Wang B. Zhao Y. Org. Lett. 2017; 19: 3135
    • 4b Li Y. Shan C. Yang Y.-F. Shi F. Qi X. Houk KN. Lan Y. J. Phys. Chem. A 2017; 121: 4496
    • 4c Chen F. Zhu F.-F. Zhang M. Liu R.-H. Yu W. Han B. Org. Lett. 2017; 19: 3255
    • 4d Chen C.-H. Liu Q.-Q. Ma X.-P. Feng Y. Liang C. Pan C.-X. Su G.-F. Mo D.-L. J. Org. Chem. 2017; 82: 6417
    • 4e Saruengkhanphasit R. Collier D. Coldham I. J. Org. Chem. 2017; 82: 6489
    • 4f Wang C. Wang D. Yan H. Wang H. Pan B. Xin X. Li X. Wu F. Wan B. Angew. Chem. Int. Ed. 2014; 53: 11940
    • 5a Floyd RA. Proc. Soc. Exp. Biol. Med. 1999; 222: 236
    • 5b Zhang H. Joseph J. Vasquez-Vivar J. Karoui H. Nsanzumuhire C. Martasek P. Tordo P. Kalyanaraman B. FEBS Lett. 2000; 473: 58
    • 5c Bottle SE. Hanson GR. Micallef AS. Org. Biomol. Chem. 2003; 1: 2585
    • 5d Bottle SE. Micallef AS. Org. Biomol. Chem. 2003; 1: 2581
    • 5e Hatano B. Sato H. Ito T. Ogata T. Synlett 2007; 2130
    • 5f Wang F. Burck M. Diesendruck CE. ACS Macro Lett. 2017; 6: 42
  • 6 Floyd RA. Aging Cell 2006; 5: 51
    • 7a Gella C. Ferrer E. Alibes R. Busque F. de March P. Figueredo M. Font J. J. Org. Chem. 2009; 74: 6365
    • 7b Goti A. De Sarlo F. Romani M. Tetrahedron Lett. 1994; 35: 6571
    • 7c Goti A. Nannelli L. Tetrahedron Lett. 1996; 37: 6025
    • 7d Hou H. Zhu S. Pan F. Rueping M. Org. Lett. 2014; 16: 2872
    • 7e Murray RW. Iyanar K. Chen J. Wearing JT. J. Org. Chem. 1996; 61: 8099
    • 7f Soldaini G. Cardona F. Goti A. Org. Lett. 2007; 9: 473
    • 7g Colladon M. Scarso A. Strukul G. Green Chem. 2008; 10: 793
    • 7h Singh B. Jain SL. Khatri PK. Sain B. Green Chem. 2009; 11: 1941
    • 7i Yudha SS. Kusuma I. Asao N. Tetrahedron 2015; 71: 6459
    • 7j Mirza-Aghayan M. Tavana MM. Boukherroub R. Tetrahedron Lett. 2014; 55: 5471
    • 7k Nikbakht F. Heydari A. Saberi D. Azizi K. Tetrahedron Lett. 2013; 54: 6520
    • 7l Abrantes M. Gonçalves IS. Pillinger M. Vurchio C. Cordero FM. Brandi A. Tetrahedron Lett. 2011; 52: 7079
    • 7m Singh B. Jain SL. Rana BS. Khatri PK. Sinha AK. Sain B. ChemCat Chem 2010; 2: 1260
    • 7n Zonta C. Cazzola E. Mba M. Licini G. Adv. Synth. Catal. 2008; 350: 2503
    • 8a Saladino R. Neri V. Cardona F. Goti A. Adv. Synth. Catal. 2004; 346: 639
    • 8b Cicchi S. Corsi M. Goti A. J. Org. Chem. 1999; 64: 7243
    • 8c Cicchi S. Marradi M. Goti A. Brandi A. Tetrahedron Lett. 2001; 42: 6503
    • 8d Matassini C. Parmeggiani C. Cardona F. Goti A. Org. Lett. 2015; 17: 4082
    • 8e D’Adamio G. Parmeggiani C. Goti A. Cardona F. Eur. J. Org. Chem. 2015; 6541
    • 8f Prakash P. Gravel E. Nguyen D.-V. Namboothiri IN. N. Doris E. ChemCatChem 2017; 9: 2091
    • 8g Parmeggiania C. Matassini C. Cardona F. Goti A. Synthesis 2017; 49: 2890
    • 9a Morales S. Guijarro FG. Alonso I. Ruano JL. G. Cid MB. ACS Catal. 2016; 6: 84
    • 9b Torrente S. Noya B. Branchadell V. Alonso R. J. Org. Chem. 2003; 68: 4772
    • 9c Pfeiffer JY. Beauchemin AM. J. Org. Chem. 2009; 74: 8381
    • 9d Grigor’ev IA. Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis. Feuer H. Wiley; Hoboken: 2008: 129-434
    • 10a LeBel NA. Balasubramanian N. Tetrahedron Lett. 1985; 26: 4331
    • 10b Nakama K. Seki S. Kanemasa S. Tetrahedron Lett. 2001; 42: 6719
    • 10c Grigg R. Markandu J. Surendrakumar S. Tetrahedron Lett. 1990; 31: 1191
    • 10d Ma X.-P. Shi W.-M. Mo X.-L. Li X.-H. Li L.-G. Pan C.-X. Chen B. Su G.-F. Mo D.-L. J. Org. Chem. 2015; 80: 10098
    • 10e Wu S.-Y. Ma X.-P. Liang C. Mo D.-L. J. Org. Chem. 2017; 82: 3232
    • 11a Kazemi F. Ramdar M. Tavana B. Davarpanah F. Monatsh. Chem. 2017; 148: 1101
    • 11b Vallee Y. Masson G. Py S. Cividino P. Pandya US. Chapoulaud VG. Synlett 2001; 1281
    • 11c Cisneros L. Serna P. Corma A. Angew. Chem. Int. Ed. 2014; 53: 9306
    • 11d Ung S. Falguieres A. Guy A. Ferroud C. Tetrahedron Lett. 2005; 46: 5913
    • 12a Kawade RK. Liu R.-S. Angew. Chem. Int. Ed. 2017; 56: 2035
    • 12b Pagar VV. Liu R.-S. Angew. Chem. Int. Ed. 2015; 54: 4923
    • 12c Reddy AR. Zhou C.-Y. Che C.-M. Org. Lett. 2014; 16: 1048
    • 12d Reddy AR. Guo Z. Siu F.-M. Lok C.-N. Liu F. Yeung K.-C. Zhou C.-Y. Che C.-M. Org. Biomol. Chem. 2012; 10: 9165
    • 12e Pagar VV. Jadhav AM. Liu R.-S. J. Am. Chem. Soc. 2011; 133: 20728
    • 12f Wu M.-Y. He W.-W. Liu X.-Y. Tan B. Angew. Chem. Int. Ed. 2015; 54: 9409
    • 12g Molander GA. Cavalcan LN. Org. Lett. 2013; 15: 3166
    • 12h Xu Z.-J. Zhu D. Zeng X. Wang F. Tan B. Hou Y. Lv Y. Zhong G. Chem. Commun. 2010; 46: 2504
    • 12i Zhang Y.-H. Wub M.-Y. Huang W.-C. RSC Adv. 2015; 5: 105825
  • 13 Liu Z. Li Q. Liao P. Bi X. Chem. Eur. J. 2017; 23: 4756
  • 14 Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
    • 15a Zhao F. Liu N. Zhan P. Jiang X. Liu X. Eur. J. Med. Chem. 2015; 94: 218
    • 15b Zhang M.-Z. Chen Q. Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
    • 15c Sherer C. Snape TJ. Eur. J. Med. Chem. 2015; 97: 552
    • 15d Ishikura DM. Abe T. Choshi T. Hibino S. Nat. Prod. Rep. 2015; 32: 1389
    • 15e Walton K. Berry JP. Mar. Drugs 2016; 14: 73
    • 15f Tanner ME. Nat. Prod. Rep. 2015; 32: 88
    • 15g Matsuda Y. Abe I. Nat. Prod. Rep. 2016; 33: 26
    • 15h Sunil D. Kamath PR. Mini-Rev. Med. Chem. 2016; 16: 1470
    • 15i Patil R. Patil SA. Beaman KD. Patil SA. Future Med. Chem. 2016; 8: 1291
  • 16 CCDC 1556499 (3a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 17 Yan H. Wang B. Angew. Chem. Int. Ed. 2015; 54: 10613