Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(08): 1728-1736
DOI: 10.1055/s-0036-1591757
DOI: 10.1055/s-0036-1591757
paper
Coupling of N-Nosylhydrazones with Nitrosoarenes: Transition-Metal-Free Approach to (Z)-N-Arylnitrones
Further Information
Publication History
Received: 27 November 2017
Accepted after revision: 03 January 2018
Publication Date:
05 February 2018 (online)
Abstract
An efficient and transition-metal-free protocol for the synthesis of (Z)-N-arylnitrones from the direct coupling of N-nosylhydrazones with nitrosoarenes under mild conditions is described. The protocol is compatible with a wide range of functional groups placed on both the reagents and provided the corresponding nitrones in good to excellent yields by simple recrystallization process. The use of these 1,3-dipoles for the synthesis of substituted indoles is elaborated for 2,3-diphenyl-1H-indole.
Key words
synthetic methods - N-nosylhydrazones - (Z)-N-arylnitrones - nitrosoarenes - metal-free approachSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591757.
- Supporting Information
-
References
- 1a Hamer J. Macaluso A. Chem. Rev. 1964; 64: 473
- 1b Katahara S. Kobayashi S. Fujita K. Matsumoto T. Sato T. Chida N. J. Am. Chem. Soc. 2016; 138: 5246
- 1c Gothelf KV. Jørgensen KA. Chem. Rev. 1998; 98: 863
- 1d Yang J. Synlett 2012; 23: 2293
- 2a Shi Y. Lin A. Mao H. Mao Z. Li W. Hu H. Zhu C. Cheng Y. Chem. Eur. J. 2013; 19: 1914
- 2b Jiao P. Nakashima D. Yamamoto H. Angew. Chem. Int. Ed. 2008; 47: 2411
- 2c Nakashima D. Yamamoto H. J. Am. Chem. Soc. 2006; 128: 9626
- 2d Palomo C. Oiarbide M. Arceo E. Garcia JM. Lopez R. Gonzalez A. Angew. Chem. Int. Ed. 2005; 44: 6187
- 2e Sibi MP. Ma Z.-H. Jasperse CP. J. Am. Chem. Soc. 2004; 126: 718
- 3a Anderson LL. Asian J. Org. Chem. 2016; 5: 9
- 3b Zhang Z.-M. Chen P. Li W. Niu Y. Zhao X.-L. Zhang J. Angew. Chem. Int. Ed. 2014; 53: 4350
- 3c Nakamura I. Jo T. Zhang D. Terada M. Org. Chem. Front. 2014; 1: 914
- 3d Mo D.-L. Anderson LL. Angew. Chem. Int. Ed. 2013; 52: 6722
- 3e Yeom H.-S. Shin S. Acc. Chem. Res. 2014; 47: 966
- 3f Yeom H.-S. Lee Y. Lee J.-E. Shin S. Org. Biomol. Chem. 2009; 7: 4744
- 3g Yeom H.-S. Lee Y. Jeong J. So E. Hwang S. Lee J.-E. Lee SS. Shin S. Angew. Chem. Int. Ed. 2010; 49: 1611
- 3h Pati K. Liu R.-S. Chem. Commun. 2009; 5233
- 3i Nakamura I. Okamoto M. Sato Y. Terada M. Angew. Chem. Int. Ed. 2012; 51: 10816
- 3j Gawade SA. Bhunia S. Liu R.-S. Angew. Chem. Int. Ed. 2012; 51: 7835
- 3k Mo D.-L. Wink DJ. Anderson LL. Chem. Eur. J. 2014; 20: 13217
- 4a Yao T. Ren B. Wang B. Zhao Y. Org. Lett. 2017; 19: 3135
- 4b Li Y. Shan C. Yang Y.-F. Shi F. Qi X. Houk KN. Lan Y. J. Phys. Chem. A 2017; 121: 4496
- 4c Chen F. Zhu F.-F. Zhang M. Liu R.-H. Yu W. Han B. Org. Lett. 2017; 19: 3255
- 4d Chen C.-H. Liu Q.-Q. Ma X.-P. Feng Y. Liang C. Pan C.-X. Su G.-F. Mo D.-L. J. Org. Chem. 2017; 82: 6417
- 4e Saruengkhanphasit R. Collier D. Coldham I. J. Org. Chem. 2017; 82: 6489
- 4f Wang C. Wang D. Yan H. Wang H. Pan B. Xin X. Li X. Wu F. Wan B. Angew. Chem. Int. Ed. 2014; 53: 11940
- 5a Floyd RA. Proc. Soc. Exp. Biol. Med. 1999; 222: 236
- 5b Zhang H. Joseph J. Vasquez-Vivar J. Karoui H. Nsanzumuhire C. Martasek P. Tordo P. Kalyanaraman B. FEBS Lett. 2000; 473: 58
- 5c Bottle SE. Hanson GR. Micallef AS. Org. Biomol. Chem. 2003; 1: 2585
- 5d Bottle SE. Micallef AS. Org. Biomol. Chem. 2003; 1: 2581
- 5e Hatano B. Sato H. Ito T. Ogata T. Synlett 2007; 2130
- 5f Wang F. Burck M. Diesendruck CE. ACS Macro Lett. 2017; 6: 42
- 6 Floyd RA. Aging Cell 2006; 5: 51
- 7a Gella C. Ferrer E. Alibes R. Busque F. de March P. Figueredo M. Font J. J. Org. Chem. 2009; 74: 6365
- 7b Goti A. De Sarlo F. Romani M. Tetrahedron Lett. 1994; 35: 6571
- 7c Goti A. Nannelli L. Tetrahedron Lett. 1996; 37: 6025
- 7d Hou H. Zhu S. Pan F. Rueping M. Org. Lett. 2014; 16: 2872
- 7e Murray RW. Iyanar K. Chen J. Wearing JT. J. Org. Chem. 1996; 61: 8099
- 7f Soldaini G. Cardona F. Goti A. Org. Lett. 2007; 9: 473
- 7g Colladon M. Scarso A. Strukul G. Green Chem. 2008; 10: 793
- 7h Singh B. Jain SL. Khatri PK. Sain B. Green Chem. 2009; 11: 1941
- 7i Yudha SS. Kusuma I. Asao N. Tetrahedron 2015; 71: 6459
- 7j Mirza-Aghayan M. Tavana MM. Boukherroub R. Tetrahedron Lett. 2014; 55: 5471
- 7k Nikbakht F. Heydari A. Saberi D. Azizi K. Tetrahedron Lett. 2013; 54: 6520
- 7l Abrantes M. Gonçalves IS. Pillinger M. Vurchio C. Cordero FM. Brandi A. Tetrahedron Lett. 2011; 52: 7079
- 7m Singh B. Jain SL. Rana BS. Khatri PK. Sinha AK. Sain B. ChemCat Chem 2010; 2: 1260
- 7n Zonta C. Cazzola E. Mba M. Licini G. Adv. Synth. Catal. 2008; 350: 2503
- 8a Saladino R. Neri V. Cardona F. Goti A. Adv. Synth. Catal. 2004; 346: 639
- 8b Cicchi S. Corsi M. Goti A. J. Org. Chem. 1999; 64: 7243
- 8c Cicchi S. Marradi M. Goti A. Brandi A. Tetrahedron Lett. 2001; 42: 6503
- 8d Matassini C. Parmeggiani C. Cardona F. Goti A. Org. Lett. 2015; 17: 4082
- 8e D’Adamio G. Parmeggiani C. Goti A. Cardona F. Eur. J. Org. Chem. 2015; 6541
- 8f Prakash P. Gravel E. Nguyen D.-V. Namboothiri IN. N. Doris E. ChemCatChem 2017; 9: 2091
- 8g Parmeggiania C. Matassini C. Cardona F. Goti A. Synthesis 2017; 49: 2890
- 9a Morales S. Guijarro FG. Alonso I. Ruano JL. G. Cid MB. ACS Catal. 2016; 6: 84
- 9b Torrente S. Noya B. Branchadell V. Alonso R. J. Org. Chem. 2003; 68: 4772
- 9c Pfeiffer JY. Beauchemin AM. J. Org. Chem. 2009; 74: 8381
- 9d Grigor’ev IA. Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis. Feuer H. Wiley; Hoboken: 2008: 129-434
- 10a LeBel NA. Balasubramanian N. Tetrahedron Lett. 1985; 26: 4331
- 10b Nakama K. Seki S. Kanemasa S. Tetrahedron Lett. 2001; 42: 6719
- 10c Grigg R. Markandu J. Surendrakumar S. Tetrahedron Lett. 1990; 31: 1191
- 10d Ma X.-P. Shi W.-M. Mo X.-L. Li X.-H. Li L.-G. Pan C.-X. Chen B. Su G.-F. Mo D.-L. J. Org. Chem. 2015; 80: 10098
- 10e Wu S.-Y. Ma X.-P. Liang C. Mo D.-L. J. Org. Chem. 2017; 82: 3232
- 11a Kazemi F. Ramdar M. Tavana B. Davarpanah F. Monatsh. Chem. 2017; 148: 1101
- 11b Vallee Y. Masson G. Py S. Cividino P. Pandya US. Chapoulaud VG. Synlett 2001; 1281
- 11c Cisneros L. Serna P. Corma A. Angew. Chem. Int. Ed. 2014; 53: 9306
- 11d Ung S. Falguieres A. Guy A. Ferroud C. Tetrahedron Lett. 2005; 46: 5913
- 12a Kawade RK. Liu R.-S. Angew. Chem. Int. Ed. 2017; 56: 2035
- 12b Pagar VV. Liu R.-S. Angew. Chem. Int. Ed. 2015; 54: 4923
- 12c Reddy AR. Zhou C.-Y. Che C.-M. Org. Lett. 2014; 16: 1048
- 12d Reddy AR. Guo Z. Siu F.-M. Lok C.-N. Liu F. Yeung K.-C. Zhou C.-Y. Che C.-M. Org. Biomol. Chem. 2012; 10: 9165
- 12e Pagar VV. Jadhav AM. Liu R.-S. J. Am. Chem. Soc. 2011; 133: 20728
- 12f Wu M.-Y. He W.-W. Liu X.-Y. Tan B. Angew. Chem. Int. Ed. 2015; 54: 9409
- 12g Molander GA. Cavalcan LN. Org. Lett. 2013; 15: 3166
- 12h Xu Z.-J. Zhu D. Zeng X. Wang F. Tan B. Hou Y. Lv Y. Zhong G. Chem. Commun. 2010; 46: 2504
- 12i Zhang Y.-H. Wub M.-Y. Huang W.-C. RSC Adv. 2015; 5: 105825
- 13 Liu Z. Li Q. Liao P. Bi X. Chem. Eur. J. 2017; 23: 4756
- 14 Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
- 15a Zhao F. Liu N. Zhan P. Jiang X. Liu X. Eur. J. Med. Chem. 2015; 94: 218
- 15b Zhang M.-Z. Chen Q. Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
- 15c Sherer C. Snape TJ. Eur. J. Med. Chem. 2015; 97: 552
- 15d Ishikura DM. Abe T. Choshi T. Hibino S. Nat. Prod. Rep. 2015; 32: 1389
- 15e Walton K. Berry JP. Mar. Drugs 2016; 14: 73
- 15f Tanner ME. Nat. Prod. Rep. 2015; 32: 88
- 15g Matsuda Y. Abe I. Nat. Prod. Rep. 2016; 33: 26
- 15h Sunil D. Kamath PR. Mini-Rev. Med. Chem. 2016; 16: 1470
- 15i Patil R. Patil SA. Beaman KD. Patil SA. Future Med. Chem. 2016; 8: 1291
- 16 CCDC 1556499 (3a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 17 Yan H. Wang B. Angew. Chem. Int. Ed. 2015; 54: 10613
For selected examples of [3+2] cycloaddition involving nitrone, see: