Subscribe to RSS
DOI: 10.1055/s-0036-1591954
Unravelling Factors Affecting Directed Lithiation of Acylaminoaromatics
Publication History
Received: 13 February 2018
Accepted: 15 February 2018
Publication Date:
27 March 2018 (online)

Published as part of the Special Section on the Main Group Metal Chemistry Symposium
Abstract
Ureas, pivalamides, and carbamates are widely used as directing metalation groups (DMGs) due to their good directing ability, low cost, ease of access, and ease of removal. Lithiation of substituted benzenes having such directing metalation groups using various alkyllithiums in anhydrous solvent at low temperature provides the corresponding lithium intermediates, but lithiation may take place at various sites. Reactions of the lithium reagents obtained in situ with various electrophiles give the corresponding derivatives, typically substituted at the site(s) where initial lithiation occurred, often in high yields. However, it is often difficult to predict what reagents and/or conditions might be needed to give specific products or to draw general conclusions about the factors that influence the reactions, especially when the reagents, temperature, and solvents used in reported reactions are not directly comparable. In this review, therefore, we attempt to unravel the various factors that influence the lithiation of various simple aromatic compounds containing urea, pivalamide, and carbamate groups.
1 Introduction
2 Lithiation with DMG Attached Directly to the Phenyl Ring
2.1 Influence of the DMG
2.2 Influence of Substitution on the Phenyl Ring
3 Lithiation with the DMG Separated by a CH2 Group from the Phenyl Ring
3.1 Effect of the DMG
3.2 Influence of Substitution on the Phenyl Ring
4 Lithiation with the Phenyl Ring and DMG Separated by Two or More CH2 Groups
4.1 Effect of the DMG and Its Distance from the Phenyl Group
4.2 Effect of Substituents on the Phenyl Ring
5 Conclusions
-
References
- 1 Clayden J. Greeves N. Warren S. Wothers P. Organic Chemistry . Oxford University Press; Oxford: 2007
- 2 Smith K. El-Hiti GA. Green Chem. 2011; 13: 1579
- 3 Gschwend HW. Rodriguez HR. Org. React. 1979; 26: 1
- 4 Snieckus V. Chem. Rev. 1990; 90: 879
- 5 Clayden J. Organolithiums: Selectivity for Synthesis . Pergamon; Oxford: 2002
- 6 Schlosser M. Organoalkali Chemistry . In Organometallics in Synthesis: A Manual . 2nd ed.; Schlosser M. Wiley; Chichester: 2002: 1-352
- 7 Clayden J. In The Chemistry of Organolithium Compounds . Vol. 1. Rappoport Z. Marek I. Wiley; Chichester: 2004: 495-646
- 8 Schlenk W. Bergmann E. Justus Liebigs Ann. Chem. 1928; 463: 98
- 9 Gilman H. Bebb RL. J. Am. Chem. Soc. 1939; 61: 109
- 10 Wittig G. Fuhrman G. Chem. Ber. 1940; 73: 1197
- 11 Gilman H. Jacoby AL. J. Org. Chem. 1938; 03: 108
- 12 Wittig G. Pockels U. Dröge H. Chem. Ber. 1938; 71: 1903
- 13 Langer AW. Adv. Chem. Ser. 1974; 130: 1
- 14 Halesa AF. Schulz DN. Tate DP. Mochel VD. Adv. Organomet. Chem. 1980; 18: 55
- 15 Seyferth D. Organometallics 2006; 25: 2
- 16 Wakefield BJ. The Chemistry of Organolithium Compounds . Pergamon Press; Oxford: 1974
- 17 Schlosser M. Pure Appl. Chem. 1988; 60: 1627
- 18 Mallan JM. Bebb RL. Chem. Rev. 1969; 69: 693
- 19 Shirley DA. Letho EA. J. Am. Chem. Soc. 1957; 79: 3481
- 20 Slocum DW. Jennings CA. J. Org. Chem. 1976; 41: 3653
- 21a Simig G. Schlosser M. Tetrahedron Lett. 1991; 32: 1963
- 21b Schlosser M. Simig G. Tetrahedron Lett. 1991; 32: 1965
- 22 Gilman H. Cheney LC. Willis HB. J. Am. Chem. Soc. 1939; 61: 951
- 23 Gilman H. Langham W. Willis HB. J. Am. Chem. Soc. 1940; 62: 346
- 24 Hillis LR. Gould SJ. J. Org. Chem. 1985; 50: 718
- 25 Cho IS. Gong L. Muchowski JM. J. Org. Chem. 1991; 56: 7288
- 26 Stanetty P. Koller H. Mihovilovic M. J. Org. Chem. 1992; 57: 6833
- 27 Takagishi S. Katsoulos G. Schlosser M. Synlett 1992; 360
- 28 Ubeda JI. Villacampa M. Avendaño C. Synlett 1997; 285
- 29 Bellezza F. Cipiciani A. Ruzziconi R. Spizzichino S. J. Fluorine Chem. 2008; 129: 97
- 30 Muchowski JM. Venuti MC. J. Org. Chem. 1980; 45: 4798
- 31 Gomez-Bengoa E. Echavarren AM. J. Org. Chem. 1991; 56: 3497
- 32 Salituro FC. McDonald IA. J. Org. Chem. 1988; 53: 6138
- 33 Clark RD. Caroon JM. Kluge AF. Repke DB. Roszkowski AP. Strosberg AM. Baker S. Bitter SM. Okadaf MD. J. Med. Chem. 1986; 26: 657
- 34 Sato N. Tetrahedron Lett. 2002; 43: 6403
- 35 Hoffmann RW. Kemper B. Tetrahedron Lett. 1981; 22: 5263
- 36 Derdau V. J. Labelled Compd. Radiopharm. 2004; 47: 19
- 37 Rajapakse HA. Young MB. Zhu H. Charlton S. Tsou NN. Tetrahedron Lett. 2005; 46: 8909
- 38 Führer W. Gschwend HW. J. Org. Chem. 1979; 44: 1133
- 39 Smith K. Pritchard GJ. Angew. Chem., Int. Ed. Engl. 1990; 29: 282
- 40 Smith K. El-Hiti GA. Pritchard GJ. Hamilton A. J. Chem. Soc., Perkin Trans. 1 1999; 2299
- 41 Spitznerd R. Mielke D. Scholz D. Schroth W. Preiss A. Tetrahedron 1982; 38: 927
- 42 Smith K. El-Hiti GA. Shukla AP. J. Chem. Soc., Perkin Trans. 1 1999; 2305
- 43 Schlosser M. Eur. J. Org. Chem. 2001; 3975
- 44 Lizos DE. Murphy JA. Org. Biomol. Chem. 2003; 1: 117
- 45 Kondo Y. Kojima S. Sakamoto T. J. Org. Chem. 1997; 62: 6507
- 46 Reuter DC. Flippin LA. McIntosh J. Caroon JM. Hammaker J. Tetrahedron Lett. 1994; 35: 4899
- 47 Smith K. El-Hiti GA. Fekri A. Alshammari MB. Heterocycles 2012; 86: 391
- 48 Hansch C. Leo A. Taft RW. Chem. Rev. 1991; 91: 165
- 49 Leroux F. Castagnetti E. Schlosser M. J. Org. Chem. 2003; 68: 4693
- 50 Rauf W. Brown JM. Angew. Chem. Int. Ed. 2008; 47: 4228
- 51 Guilarte V. Castroviejo MP. García-García P. Fernandez-Rodríguez MA. Sanz R. J. Org. Chem. 2011; 76: 3416
- 52 Sedelmeier J. Lima F. Litzler A. Martin B. Venturoni F. Org. Lett. 2013; 15: 5546
- 53 Rescigno A. Bruyneel F. Padiglia A. Sollai F. Salis A. Marchand-Brynaert J. Sanjust E. Biochim. Biophys. Acta 2011; 1810: 799
- 54 Mulhem TA. Davis M. Krikke JJ. Thomas JA. J. Org. Chem. 1993; 58: 5537
- 55 Clark RD. Jahangir A. Org. React. 1995; 47: 1
- 56 Clark DR. Muchowski MJ. Souchet M. Repke BD. Synlett 1990; 207
- 57 Clark RD. Muchowski JM. Flippin LA. Repke DB. Souchet M. Synthesis 1991; 871
- 58 Cervantes A. Contreras CA. Guzman A. Vale EE. Velarde E. Berthiaume SL. Muchowski JM. Can. J. Chem. 1995; 73: 336
- 59 Smith K. El-Hiti GA. Al-Mansury SA. Alshammari MB. Balakit AA. ARKIVOC 2014; v: 365 ; http://www.arkat-usa.org/home
- 60 Schmid M. Waldner B. Schnurch M. Mihovilovic DM. Stanetty P. Tetrahedron 2011; 67: 2895
- 61 Aurrecoechea JM. Suero R. de Torres E. J. Org. Chem. 2006; 71: 8767
- 62 Van der Veken P. Senten K. Kertesz I. De Meester I. Lambeir A.-M. Maes M.-B. Scharpé S. Haemers A. Augustyns K. J. Med. Chem. 2005; 48: 1768
- 63 Katsoulos G. Schlosser M. Tetrahedron Lett. 1993; 34: 6263
- 64 Smith K. El-Hiti GA. Hegazy AS. Fekri A. Kariuki BM. ARKIVOC 2009; xiv: 266 ; http://www.arkat-usa.org/home
- 65 Simig G. Schlosser M. Tetrahedron Lett. 1988; 29: 4277
- 66 Barberis C. Voyer N. Roby J. Chenard S. Tremblay M. Labrie P. Tetrahedron 2001; 57: 2965
- 67 Hoppe D. Hense T. Angew. Chem. Int. Ed. 1997; 36: 2282
- 68 Park YS. Beak P. Bull. Korean Chem. Soc. 1998; 19: 1253
- 69 Kanazawa AM. Correa A. Denis J.-N. Luche M.-J. Greene AE. J. Org. Chem. 1993; 58: 255
- 70 Keller L. Beaumont S. Liu J.-M. Thoret S. Bignon JS. Wdzieczak-Bakala J. Dauban P. Dodd RH. J. Med. Chem. 2008; 51: 3414
- 71 Smith K. El-Hiti GA. Hegazy AS. Synthesis 2010; 1371
- 72 Smith K. El-Hiti GA. Alshammari MB. Synthesis 2012; 44: 2013
- 73 Clark DR. Jahangir A. Tetrahedron 1993; 49: 1351
- 74 Smith K. El-Hiti GA. Alshammari MB. Synthesis 2014; 46: 394
- 75 Smith K. El-Hiti GA. Alshammari MB. Synlett 2013; 24: 117
- 76 Smith K. El-Hiti GA. Alshammari MB. J. Org. Chem. 2012; 77: 11210