Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(10): 1400-1404
DOI: 10.1055/s-0036-1591970
DOI: 10.1055/s-0036-1591970
letter
Remote Oxidative C–H Amidation of Anilides with Dibenzenesulfonimides under Metal-Free Conditions
We are grateful to the National Natural Science Foundation of China (No. 21702054), Hubei Provincial Natural Science Foundation (No. 2016CFB206) and the Hubei Provincial Hundred-Talent Program Fund for financial support.Further Information
Publication History
Received: 17 December 2017
Accepted after revision: 05 March 2018
Publication Date:
07 May 2018 (online)
Abstract
A remote oxidative C–H bond amidation of anilides with dibenzenesulfonimides mediated by PhI(OAc)2 under metal-free conditions provided para-amidated anilides with high selectivity and moderate to good yields. The reaction proceeded under mild or neutral conditions and it has good air and moisture tolerance. The method represents a novel and facile strategy for the synthesis of arylamines.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591970.
- Supporting Information
-
References and Notes
- 1a Cheng J. Kamiya K. Kodama I. Cardiovasc. Drug. Rev. 2001; 19: 152
- 1b Sánchez C. Méndez C. Salas JA. Nat. Prod. Rep. 2006; 23: 1007
- 1c Amino Group Chemistry: From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2007
- 1d Hili R. Yudin AK. Nat. Chem. Biol. 2006; 2: 284
- 1e Lawrence SA. Amines: Synthesis Properties and Applications . Cambridge University Press; Cambridge: 2004. Chap. 8 265-305
- 2a Beccalli EM. Broggini G. Martinelli M. Sottocornola S. Chem. Rev. 2007; 107: 5318
- 2b Collet F. Dodd RH. Dauban P. Chem. Commun. 2009; 5061
- 2c Cho SH. Kim JY. Kwak J. Chang S. Chem. Soc. Rev. 2011; 40: 5068
- 2d Louillat M.-L. Patureau FW. Chem. Soc. Rev. 2014; 43: 901
- 2e Wan J.-P. Jing Y. Beilstein J. Org. Chem. 2015; 11: 2209
- 2f Subramanian P. Rudolf GC. Kaliappan KP. Chem. Asian J. 2016; 11: 168
- 2g Jiao J. Murakami K. Itami K. ACS Catal. 2016; 6: 610
- 2h Kim H. Chang S. ACS Catal. 2016; 6: 2341
- 2i Rit RK. Shankara M. Sahoo AK. Org. Biomol. Chem. 2017; 15: 1282
- 3a Sun K. Li L. Xiong T. Zhang J. Zhang Q. J. Am. Chem. Soc. 2011; 133: 1694
- 3b Marchetti L. Kantak A. Davis R. DeBoef B. Org. Lett. 2015; 17: 358
- 3c Berzina B. Sokolovs I. Suna E. ACS Catal. 2015; 5: 7008
- 3d Romero NA. Margrey KA. Tay NE. Nicewic DA. Science 2015; 349: 1326
- 3e Boursalian GB. Ham WS. Mazzotti AR. Ritter T. Nat. Chem. 2016; 8: 810
- 3f Dey A. Maitya S. Maiti D. Chem. Commun. 2016; 52: 12398
- 4a Li C.-J. Anastas PT. Chem. Soc. Rev. 2012; 41: 1413
- 4b Dunn PJ. Chem. Soc. Rev. 2012; 41: 1452
- 4c Sun C.-J. Shi Z.-J. Chem. Rev. 2014; 114: 9219
- 4d Qin Y. Zhu L. Luo S. Chem. Rev. 2017; 117: 9433
- 5a Dohi T. Ito M. Yamaoka N. Morimoto K. Fujioka H. Kita Y. Tetrahedron 2009; 65: 10797
- 5b Kita Y. Dohi T. Chem. Rec. 2015; 15: 886
- 5c Narayan R. Manna S. Antonchick AP. Synlett 2015; 26: 1785
- 5d Muñiz K. Top. Curr. Chem. 2016; 373: 105
- 6a Kim HJ. Kim J. Cho SH. Chang S. J. Am. Chem. Soc. 2011; 133: 16382
- 6b Kantak AA. Potavathri S. Barham RA. Romano KM. DeBoef B. J. Am. Chem. Soc. 2011; 133: 19960
- 7a Röben C. Souto JA. González Y. Lishchynskyi A. Muñiz K. Angew. Chem. Int. Ed. 2011; 50: 9478
- 7b Souto JA. Becker P. Iglesias Á. Muñiz K. J. Am. Chem. Soc. 2012; 134: 15505
- 7c Souto JA. Zian D. Muñiz K. J. Am. Chem. Soc. 2012; 134: 7242
- 7d Röben C. Souto JA. Escudero-Adán EC. Muñiz K. Org. Lett. 2013; 15: 1008
- 7e Souto JA. Martínez C. Velilla I. Muñiz K. Angew. Chem. Int. Ed. 2013; 52: 1324
- 7f Purkait N. Okumura S. Souto JA. Muñiz K. Org. Lett. 2014; 16: 4750
- 7g Fra L. Millán A. Souto JA. Muñiz K. Angew. Chem. Int. Ed. 2014; 53: 7349
- 8 Ji D. He X. Xu Y. Xu Z. Bian Y. Liu W. Zhu Q. Xu Y. Org. Lett. 2016; 18: 4478
- 9 Wang Y. Wang Y. Guo Z. Zhang Q. Li D. Asian J. Org. Chem. 2016; 5: 1438
- 10a Wang Y. Wang Y. Zhang Q. Li D. Org. Chem. Front. 2017; 4: 514
- 10b Zhang C. Yue Q. Xiao Z. Wang X. Zhang Q. Li D. Synthesis 2017; 49: 4303
- 11 N-{4-[Bis(phenylsulfonyl)amino]-2-methylphenyl}acetamide (3a); Typical Procedure A vial containing a stirring bar and sealed with a Teflon-lined cap was charged with a mixture of 2-methylacetanilide (1a, 0.2 mmol), PhI(OAc)2 (0.4 mmol), and HN(SO2Ph)2 (2a, 0.3mmol). THF (2 mL) was added, and the mixture was stirred at 25 °C for 8 h. The mixture was then added to H2O (15 mL), and the resulting mixture was extracted with EtOAc (3 × 10 mL). The organic layers were combined, dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified by column chromatography [silica gel, EtOAc–PE (2:1)] to give a white solid; yield: 64.0 mg (72%); mp 184–186 °C. 1H NMR (400 MHz, CDCl3): δ = 2.14 (s, 3 H), 2.18 (s, 3 H), 6.79–6.84 (m, 2 H), 7.21 (s, 1 H), 7.54 (t, J = 7.54 Hz, 4 H), 7.67 (t, J = 7.36 Hz, 2 H), 7.92 (d, J = 7.92 Hz, 4 H), 7.98 (d, J = 8.48 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 7.63, 24.57, 122.40, 128.52, 129.06, 129.81, 130.09, 133.23, 133.53, 134.03, 137.86, 139.30, 168.52. HRMS-ESI: m/z [M + H]+ calcd for C21H21N2O5S2: 445.0886; found: 445.0884.
For selected reviews, see:
For examples of transition-metal-catalyzed para-C–H amination, see:
For a recent review, see:
For recent reviews, see: