Subscribe to RSS
DOI: 10.1055/s-0036-1592365
Bone Quality—Beyond Bone Mineral Density
Publication History
Publication Date:
14 October 2016 (online)
Abstract
Both bone mass and quality are responsible for bone strength. Whereas bone mass is measured with bone mineral density, quantification of bone quality is more complex and involves bone architecture, texture, and mechanical parameters. Over the last decade, significant progress has been made in developing technologies to measure bone quality. These include novel low-cost modalities such as trabecular bone score measured on dual-energy X-ray absorptiometry images and quantitative ultrasound as well as more advanced imaging modalities such as multidetector computed tomography, magnetic resonance imaging, and high-resolution peripheral quantitative computed tomography. We describe the reasons to measure bone quality and present the different modalities currently used to quantify it. This article also summarizes the strengths and weaknesses as well as the clinical feasibility of these technologies.
-
References
- 1 NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001; 285 (6) 785-795
- 2 Arabi A, Baddoura R, Awada H , et al. Discriminative ability of dual-energy X-ray absorptiometry site selection in identifying patients with osteoporotic fractures. Bone 2007; 40 (4) 1060-1065
- 3 Siris ES, Chen YT, Abbott TA , et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 2004; 164 (10) 1108-1112
- 4 Cummings SR, Karpf DB, Harris F , et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 2002; 112 (4) 281-289
- 5 Pothuaud L, Carceller P, Hans D. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 2008; 42 (4) 775-787
- 6 Silva BC, Leslie WD, Resch H , et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 2014; 29 (3) 518-530
- 7 Leib E, Winzenrieth R, Aubry-Rozier B, Hans D. Vertebral microarchitecture and fragility fracture in men: a TBS study. Bone 2014; 62: 51-55
- 8 Leslie WD, Aubry-Rozier B, Lix LM, Morin SN, Majumdar SR, Hans D. Spine bone texture assessed by trabecular bone score (TBS) predicts osteoporotic fractures in men: the Manitoba Bone Density Program. Bone 2014; 67: 10-14
- 9 Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom 2009; 12 (2) 170-176
- 10 Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R. Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int 2013; 24 (1) 77-85
- 11 McCloskey EV, Odén A, Harvey NC , et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 2016; 31 (5) 940-948
- 12 Shepherd JA, Schousboe JT, Broy SB, Engelke K, Leslie WD. Executive Summary of the 2015 ISCD Position Development Conference on Advanced Measures from DXA and QCT: Fracture Prediction Beyond BMD. J Clin Densitom 2015; 18 (3) 274-286
- 13 Bousson V, Bergot C, Sutter B , et al; Groupe de Recherche et d'Information sur les Ostéoporoses (GRIO). Trabecular Bone Score: Where are we now?. Joint Bone Spine 2015; 82 (5) 320-325
- 14 Bandirali M, Poloni A, Sconfienza LM , et al. Short-term precision assessment of trabecular bone score and bone mineral density using dual-energy X-ray absorptiometry with different scan modes: an in vivo study. Eur Radiol 2015; 25 (7) 2194-2198
- 15 Krueger D, Libber J, Binkley N. Spine Trabecular Bone Score Precision, a comparison between GE Lunar standard and high-resolution densitometers. J Clin Densitom 2015; 18 (2) 226-232
- 16 Thomsen K, Jepsen DB, Matzen L, Hermann AP, Masud T, Ryg J. Is calcaneal quantitative ultrasound useful as a prescreen stratification tool for osteoporosis?. Osteoporos Int 2015; 26 (5) 1459-1475
- 17 Guglielmi G, Adams J, Link TM. Quantitative ultrasound in the assessment of skeletal status. Eur Radiol 2009; 19 (8) 1837-1848
- 18 Bauer DC, Glüer CC, Cauley JA , et al; Study of Osteoporotic Fractures Research Group. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Arch Intern Med 1997; 157 (6) 629-634
- 19 Khaw KT, Reeve J, Luben R , et al. Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 2004; 363 (9404) 197-202
- 20 Chan MY, Nguyen ND, Center JR, Eisman JA, Nguyen TV. Quantitative ultrasound and fracture risk prediction in non-osteoporotic men and women as defined by WHO criteria. Osteoporos Int 2013; 24 (3) 1015-1022
- 21 Hollaender R, Hartl F, Krieg MA , et al. Prospective evaluation of risk of vertebral fractures using quantitative ultrasound measurements and bone mineral density in a population-based sample of postmenopausal women: results of the Basel Osteoporosis Study. Ann Rheum Dis 2009; 68 (3) 391-396
- 22 Olszynski WP, Brown JP, Adachi JD, Hanley DA, Ioannidis G, Davison KS ; CaMos Research Group. Multisite quantitative ultrasound for the prediction of fractures over 5 years of follow-up: the Canadian Multicentre Osteoporosis Study. J Bone Miner Res 2013; 28 (9) 2027-2034
- 23 Qin YX, Lin W, Mittra E , et al. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound. Acta Astronaut 2013; 92 (1) 79-88
- 24 Glüer CC, Eastell R, Reid DM , et al. Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS Study. J Bone Miner Res 2004; 19 (5) 782-793
- 25 Krieg MA, Cornuz J, Ruffieux C , et al. Comparison of three bone ultrasounds for the discrimination of subjects with and without osteoporotic fractures among 7562 elderly women. J Bone Miner Res 2003; 18 (7) 1261-1266
- 26 Gluer CC. A new quality of bone ultrasound research. IEEE Trans Ultrason Ferroelectr Freq Control 2008; 55 (7) 1524-1528
- 27 Nelson HD, Haney EM, Dana T, Bougatsos C, Chou R. Screening for osteoporosis: an update for the U.S. Preventive Services Task Force. Ann Intern Med 2010; 153 (2) 99-111
- 28 Krieg MA, Barkmann R, Gonnelli S , et al. Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom 2008; 11 (1) 163-187
- 29 Link TM, Vieth V, Stehling C , et al. High-resolution MRI vs multislice spiral CT: which technique depicts the trabecular bone structure best?. Eur Radiol 2003; 13 (4) 663-671
- 30 Issever AS, Vieth V, Lotter A , et al. Local differences in the trabecular bone structure of the proximal femur depicted with high-spatial-resolution MR imaging and multisection CT. Acad Radiol 2002; 9 (12) 1395-1406
- 31 Issever AS, Link TM, Kentenich M , et al. Trabecular bone structure analysis in the osteoporotic spine using a clinical in vivo setup for 64-slice MDCT imaging: comparison to microCT imaging and microFE modeling. J Bone Miner Res 2009; 24 (9) 1628-1637
- 32 Graeff C, Timm W, Nickelsen TN , et al; EUROFORS High Resolution Computed Tomography Substudy Group. Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res 2007; 22 (9) 1426-1433
- 33 Ito M, Ikeda K, Nishiguchi M , et al. Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 2005; 20 (10) 1828-1836
- 34 Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol 2010; 20 (11) 2707-2714
- 35 Carballido-Gamio J, Bonaretti S, Saeed I , et al. Automatic multi-parametric quantification of the proximal femur with quantitative computed tomography. Quant Imaging Med Surg 2015; 5 (4) 552-568
- 36 Zysset P, Pahr D, Engelke K , et al. Comparison of proximal femur and vertebral body strength improvements in the FREEDOM trial using an alternative finite element methodology. Bone 2015; 81: 122-130
- 37 Zysset P, Qin L, Lang T , et al. Clinical use of quantitative computed tomography-based finite element analysis of the hip and spine in the management of osteoporosis in adults: the 2015 ISCD Official Positions--Part II. J Clin Densitom 2015; 18 (3) 359-392
- 38 Kopperdahl DL, Aspelund T, Hoffmann PF , et al. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res 2014; 29 (3) 570-580
- 39 Keyak JH, Sigurdsson S, Karlsdottir GS , et al. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study. Bone 2013; 57 (1) 18-29
- 40 Keaveny TM, McClung MR, Genant HK , et al. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab. J Bone Miner Res 2014; 29 (1) 158-165
- 41 Heilmeier U, Carpenter DR, Patsch JM , et al. Volumetric femoral BMD, bone geometry, and serum sclerostin levels differ between type 2 diabetic postmenopausal women with and without fragility fractures. Osteoporos Int 2015; 26 (4) 1283-1293
- 42 Bauer JS, Sidorenko I, Mueller D , et al. Prediction of bone strength by μCT and MDCT-based finite-element-models: how much spatial resolution is needed?. Eur J Radiol 2014; 83 (1) e36-e42
- 43 Link TM, Lang TF. Axial QCT: clinical applications and new developments. J Clin Densitom 2014; 17 (4) 438-448
- 44 Keaveny TM. Biomechanical computed tomography-noninvasive bone strength analysis using clinical computed tomography scans. Ann N Y Acad Sci 2010; 1192: 57-65
- 45 Keaveny TM, Hoffmann PF, Singh M , et al. Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res 2008; 23 (12) 1974-1982
- 46 Mawatari T, Miura H, Hamai S , et al. Vertebral strength changes in rheumatoid arthritis patients treated with alendronate, as assessed by finite element analysis of clinical computed tomography scans: a prospective randomized clinical trial. Arthritis Rheum 2008; 58 (11) 3340-3349
- 47 Keyak JH. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 2001; 23 (3) 165-173
- 48 Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB. Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res 2005; (437) 219-228
- 49 Keyak JH, Rossi SA, Jones KA, Les CM, Skinner HB. Prediction of fracture location in the proximal femur using finite element models. Med Eng Phys 2001; 23 (9) 657-664
- 50 Keyak JH, Sigurdsson S, Karlsdottir G , et al. Male-female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone 2011; 48 (6) 1239-1245
- 51 Orwoll ES, Marshall LM, Nielson CM , et al; Osteoporotic Fractures in Men Study Group. Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res 2009; 24 (3) 475-483
- 52 Carballido-Gamio J, Harnish R, Saeed I , et al. Proximal femoral density distribution and structure in relation to age and hip fracture risk in women. J Bone Miner Res 2013; 28 (3) 537-546
- 53 Lang TF, Saeed IH, Streeper T , et al. Spatial heterogeneity in the response of the proximal femur to two lower-body resistance exercise regimens. J Bone Miner Res 2014; 29 (6) 1337-1345
- 54 Carballido-Gamio J, Harnish R, Saeed I , et al. Structural patterns of the proximal femur in relation to age and hip fracture risk in women. Bone 2013; 57 (1) 290-299
- 55 Li W, Kornak J, Harris T , et al. Identify fracture-critical regions inside the proximal femur using statistical parametric mapping. Bone 2009; 44 (4) 596-602
- 56 Li W, Kornak J, Harris TB , et al. Bone fracture risk estimation based on image similarity. Bone 2009; 45 (3) 560-567
- 57 Link TM, Majumdar S, Lin JC , et al. A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT. J Bone Miner Res 1998; 13 (1) 122-132
- 58 Link TM, Vieth V, Langenberg R , et al. Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif Tissue Int 2003; 72 (2) 156-165
- 59 Majumdar S, Kothari M, Augat P , et al. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 1998; 22 (5) 445-454
- 60 Phan CM, Matsuura M, Bauer JS , et al. Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology 2006; 239 (2) 488-496
- 61 Wehrli FW, Gomberg BR, Saha PK, Song HK, Hwang SN, Snyder PJ. Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 2001; 16 (8) 1520-1531
- 62 Wehrli FW, Leonard MB, Saha PK, Gomberg BR. Quantitative high-resolution magnetic resonance imaging reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J Magn Reson Imaging 2004; 20 (1) 83-89
- 63 Link TM, Majumdar S, Augat P , et al. In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 1998; 13 (7) 1175-1182
- 64 Majumdar S, Link TM, Augat P , et al; Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Osteoporos Int 1999; 10 (3) 231-239
- 65 Chang G, Deniz CM, Honig S , et al. Feasibility of three-dimensional MRI of proximal femur microarchitecture at 3 tesla using 26 receive elements without and with parallel imaging. J Magn Reson Imaging 2014; 40 (1) 229-238
- 66 Chang G, Rajapakse CS, Regatte RR , et al. 3 Tesla MRI detects deterioration in proximal femur microarchitecture and strength in long-term glucocorticoid users compared with controls. J Magn Reson Imaging 2015; 42 (6) 1489-1496
- 67 Hotca A, Ravichandra S, Mikheev A, Rusinek H, Chang G. Precision of volumetric assessment of proximal femur microarchitecture from high-resolution 3T MRI. Int J CARS 2015; 10 (1) 35-43
- 68 Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S. Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int 2005; 16 (11) 1307-1314
- 69 Cortet B, Boutry N, Dubois P, Bourel P, Cotten A, Marchandise X. In vivo comparison between computed tomography and magnetic resonance image analysis of the distal radius in the assessment of osteoporosis. J Clin Densitom 2000; 3 (1) 15-26
- 70 Benito M, Gomberg B, Wehrli FW , et al. Deterioration of trabecular architecture in hypogonadal men. J Clin Endocrinol Metab 2003; 88 (4) 1497-1502
- 71 Link TM. High resolution magnetic resonance imaging to assess trabecular bone structure in patients after transplantation: a review. Top Magn Reson Imaging 2002; 13 (5) 365-376
- 72 Link TM, Saborowski S, Kisters K , et al. Changes in calcaneal trabecular bone structure assessed with high-resolution MR imaging in patients with kidney transplantation. Osteoporos Int 2002; 13 (2) 119-129
- 73 Link TM, Lotter A, Beyer F , et al. Changes in calcaneal trabecular bone structure after heart transplantation: an MR imaging study. Radiology 2000; 217 (3) 855-862
- 74 Chesnut III CH, Majumdar S, Newitt DC , et al. Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study. J Bone Miner Res 2005; 20 (9) 1548-1561
- 75 Chang G, Honig S, Brown R , et al. Finite element analysis applied to 3-T MR imaging of proximal femur microarchitecture: lower bone strength in patients with fragility fractures compared with control subjects. Radiology 2014; 272 (2) 464-474
- 76 Krug R, Larson PE, Wang C , et al. Ultrashort echo time MRI of cortical bone at 7 tesla field strength: a feasibility study. J Magn Reson Imaging 2011; 34 (3) 691-695
- 77 Rahmer J, Börnert P, Groen J, Bos C. Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn Reson Med 2006; 55 (5) 1075-1082
- 78 Techawiboonwong A, Song HK, Wehrli FW. In vivo MRI of submillisecond T(2) species with two-dimensional and three-dimensional radial sequences and applications to the measurement of cortical bone water. NMR Biomed 2008; 21 (1) 59-70
- 79 Griffith JF, Yeung DK, Antonio GE , et al. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 2005; 236 (3) 945-951
- 80 Griffith JF, Yeung DK, Antonio GE , et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 2006; 241 (3) 831-838
- 81 Schellinger D, Lin CS, Lim J, Hatipoglu HG, Pezzullo JC, Singer AJ. Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry: their ratio as a new indicator of bone weakening. AJR Am J Roentgenol 2004; 183 (6) 1761-1765
- 82 Li X, Ma BC, Bolbos RI , et al. Quantitative assessment of bone marrow edema-like lesion and overlying cartilage in knees with osteoarthritis and anterior cruciate ligament tear using MR imaging and spectroscopic imaging at 3 Tesla. J Magn Reson Imaging 2008; 28 (2) 453-461
- 83 Yeung DK, Griffith JF, Antonio GE, Lee FK, Woo J, Leung PC. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging 2005; 22 (2) 279-285
- 84 Patsch JM, Li X, Baum T , et al. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res 2013; 28 (8) 1721-1728
- 85 Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005; 90 (12) 6508-6515
- 86 Blake GM, Naeem M, Boutros M. Comparison of effective dose to children and adults from dual X-ray absorptiometry examinations. Bone 2006; 38 (6) 935-942
- 87 Krug R, Burghardt AJ, Majumdar S, Link TM. High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am 2010; 48 (3) 601-621
- 88 Burghardt AJ, Dais KA, Masharani U, Link TM, Majumdar S. In vivo quantification of intra-cortical porosity in human cortical bone using hr-pQCT in patients with type II diabetes. J Bone Miner Res 2008; 23: S450
- 89 Burghardt AJ, Kazakia GJ, Sode M, de Papp AE, Link TM, Majumdar S. A longitudinal HR-pQCT study of alendronate treatment in post-menopausal women with low bone density: Relations between density, cortical and trabecular micro-architecture, biomechanics, and bone turnover. J Bone Miner Res 2010; 25: 2558-2271
- 90 Burrows M, Liu D, McKay H. High-resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos Int 2010; 21 (3) 515-520
- 91 Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 2010; 25 (5) 983-993
- 92 Liu XS, Zhang XH, Sekhon KK , et al. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res 2010; 25 (4) 746-756
- 93 Macneil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 2008; 42 (6) 1203-1213
- 94 Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK. Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 2010; 47 (3) 519-528
- 95 MacNeil JA, Boyd SK. Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 2008; 30 (6) 792-799
- 96 Szulc P, Boutroy S, Vilayphiou N, Chaitou A, Delmas PD, Chapurlat R. Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men—the STRAMBO study. J Bone Miner Res 2011; 26 (6) 1358-1367
- 97 Li EK, Zhu TY, Hung VY , et al. Ibandronate increases cortical bone density in patients with systemic lupus erythematosus on long-term glucocorticoid. Arthritis Res Ther 2010; 12 (5) R198
- 98 Sode M, Burghardt AJ, Kazakia GJ, Link TM, Majumdar S. Regional variations of gender-specific and age-related differences in trabecular bone structure of the distal radius and tibia. Bone 2010; 46 (6) 1652-1660
- 99 Burghardt AJ, Issever AS, Schwartz AV , et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95 (11) 5045-5055
- 100 Patsch JM, Burghardt AJ, Yap SP , et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res 2013; 28 (2) 313-324
- 101 Paccou J, Ward KA, Jameson KA, Dennison EM, Cooper C, Edwards MH. Bone microarchitecture in men and women with diabetes: the importance of cortical porosity. Calcif Tissue Int 2016; 98 (5) 465-473
- 102 Haschka J, Hirschmann S, Kleyer A , et al. High-resolution quantitative computed tomography demonstrates structural defects in cortical and trabecular bone in IBD patients. J Crohn's Colitis 2016; 10 (5) 532-540
- 103 Sundh D, Mellström D, Nilsson M, Karlsson M, Ohlsson C, Lorentzon M. Increased cortical porosity in older men with fracture. J Bone Miner Res 2015; 30 (9) 1692-1700
- 104 Jamal SA, Nickolas TL. Bone imaging and fracture risk assessment in kidney disease. Curr Osteoporos Rep 2015; 13 (3) 166-172