Semin Respir Crit Care Med 2017; 38(03): 346-358
DOI: 10.1055/s-0037-1602715
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

New Strategies Targeting Virulence Factors of Staphylococcus aureus and Pseudomonas aeruginosa

Bruno François
1   Intensive Care Unit/CIC-1435, University Hospital of Limoges, Limoges, France
,
Charles-Edouard Luyt
2   Medical Intensive Care Unit, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique–Hôpitaux de Paris, Paris, France, and Sorbonne Universités, UPMC Université Paris 06, INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
,
C. Kendall Stover
3   Research and Development, Research Infectious Disease, MedImmune, Gaithersburg, Maryland
,
Jeffery O. Brubaker
4   Scientific Publications, Medical Communications, MedImmune, Gaithersburg, Maryland
,
Jean Chastre
5   Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75651 Paris Cedex 13, France
,
Hasan S. Jafri
6   Clinical Development, Infectious Disease and Vaccines, MedImmune, Gaithersburg, Maryland
› Author Affiliations
Further Information

Publication History

Publication Date:
04 June 2017 (online)

Abstract

Morbidity, mortality, and economic burden of nosocomial pneumonia caused by Staphylococcus aureus and Pseudomonas aeruginosa remain high in mechanically ventilated and hospitalized patients despite the use of empirical antibiotic therapy or antibiotics against specific classes of pathogens and procedures to reduce nosocomial infections in hospital settings. Newer agents that neutralize or inhibit specific S. aureus or P. aeruginosa virulence factors may eliminate or reduce the risk for developing pneumonia before or during mechanical ventilation and may improve patient outcomes through mechanisms that differ from those of antibiotics. In this article, we review the types, mechanisms of action, potential advantages, and stage of development of antivirulence agents (AVAs) that hold promise as alternative preventive or interventional therapies against S. aureus– and P. aeruginosa–associated nosocomial pneumonias. We also present and discuss challenges to the effective utilization of AVAs separately from or in addition to antibiotics and the design of clinical trials and meaningful study end points.

 
  • References

  • 1 Kollef MH, Chastre J, Fagon JY. , et al. Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa . Crit Care Med 2014; 42 (10) 2178-2187
  • 2 Ding S, Kilickaya O, Senkal S, Gajic O, Hubmayr RD, Li G. Temporal trends of ventilator-associated pneumonia incidence and the effect of implementing health-care bundles in a suburban community. Chest 2013; 144 (05) 1461-1468
  • 3 Koulenti D, Tsigou E, Rello J. Nosocomial pneumonia in 27 ICUs in Europe: perspectives from the EU-VAP/CAP study. Eur J Clin Microbiol Infect Dis 2016
  • 4 Barbier F, Andremont A, Wolff M, Bouadma L. Hospital-acquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management. Curr Opin Pulm Med 2013; 19 (03) 216-228
  • 5 Blot S, Koulenti D, Dimopoulos G. , et al; EU-VAP Study Investigators. Prevalence, risk factors, and mortality for ventilator-associated pneumonia in middle-aged, old, and very old critically ill patients. Crit Care Med 2014; 42 (03) 601-609
  • 6 Napolitano LM. Use of severity scoring and stratification factors in clinical trials of hospital-acquired and ventilator-associated pneumonia. Clin Infect Dis 2010; 51 (Suppl. 01) S67-S80
  • 7 Kalanuria AA, Ziai W, Mirski M. Ventilator-associated pneumonia in the ICU. Crit Care 2014; 18 (02) 208
  • 8 Sulis CA, Walkey AJ, Abadi Y, Campbell Reardon C, Joyce-Brady M. Outcomes of a ventilator-associated pneumonia bundle on rates of ventilator-associated pneumonia and other health care-associated infections in a long-term acute care hospital setting. Am J Infect Control 2014; 42 (05) 536-538
  • 9 Estella A, Álvarez-Lerma F. Should the diagnosis of ventilator associated pneumonia be improved? [in Spanish]. Med Intensiva 2011; 35 (09) 578-582
  • 10 Metersky ML, Wang Y, Klompas M, Eckenrode S, Bakullari A, Eldridge N. Trend in ventilator-associated pneumonia rates between 2005 and 2013. JAMA 2016; 316 (22) 2427-2429
  • 11 Klompas M. Complications of mechanical ventilation--the CDC's new surveillance paradigm. N Engl J Med 2013; 368 (16) 1472-1475
  • 12 Wuerth BA, Bonnewell JP, Wiemken TL, Arnold FW. Trends in pneumonia mortality rates and hospitalizations by organism, United States, 2002-2011(1). Emerg Infect Dis 2016; 22 (09) 1624-1627
  • 13 Neidell MJ, Cohen B, Furuya Y. , et al. Costs of healthcare- and community-associated infections with antimicrobial-resistant versus antimicrobial-susceptible organisms. Clin Infect Dis 2012; 55 (06) 807-815
  • 14 Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 2010; 51 (Suppl. 01) S81-S87
  • 15 Kyaw MH, Kern DM, Zhou S, Tunceli O, Jafri HS, Falloon J. Healthcare utilization and costs associated with S. aureus and P. aeruginosa pneumonia in the intensive care unit: a retrospective observational cohort study in a US claims database. BMC Health Serv Res 2015; 15: 241
  • 16 Heister T, Kaier K, Wolkewitz M. Estimating the burden of nosocomial infections: time dependency and cost clustering should be taken into account. Am J Infect Control 2017; 45 (01) 94-95
  • 17 Barnett AG, Beyersmann J, Allignol A, Rosenthal VD, Graves N, Wolkewitz M. The time-dependent bias and its effect on extra length of stay due to nosocomial infection. Value Health 2011; 14 (02) 381-386
  • 18 Czaplewski L, Bax R, Clokie M. , et al. Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis 2016; 16 (02) 239-251
  • 19 Cohen TS, Hilliard JJ, Jones-Nelson O. , et al. Staphylococcus aureus α toxin potentiates opportunistic bacterial lung infections. Sci Transl Med 2016; 8 (329) 329ra31
  • 20 Park DR. The microbiology of ventilator-associated pneumonia. Respir Care 2005; 50 (06) 742-763 , discussion 763–765
  • 21 Kalil AC, Metersky ML, Klompas M. , et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63 (05) e61-e111
  • 22 Arvanitis M, Anagnostou T, Kourkoumpetis TK, Ziakas PD, Desalermos A, Mylonakis E. The impact of antimicrobial resistance and aging in VAP outcomes: experience from a large tertiary care center. PLoS One 2014; 9 (02) e89984
  • 23 World Health Organization. Antimicrobial resistance: global report on surveillance. Geneva, Switzerland; 2014
  • 24 Torres A, Ewig S, Lode H, Carlet J. ; European HAP working group. Defining, treating and preventing hospital acquired pneumonia: European perspective. Intensive Care Med 2009; 35 (01) 9-29
  • 25 Hidron AI, Edwards JR, Patel J. , et al; National Healthcare Safety Network Team; Participating National Healthcare Safety Network Facilities. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol 2008; 29 (11) 996-1011
  • 26 Niederman MS. Use of broad-spectrum antimicrobials for the treatment of pneumonia in seriously ill patients: maximizing clinical outcomes and minimizing selection of resistant organisms. Clin Infect Dis 2006; 42 (Suppl 2): S72-S81
  • 27 Public Health Agency of Canada. Canadian Antimicrobial Resistance Surveillance System Report 2016 . Available at https://www.canada.ca/en/public-health/services/publications/drugs-health-products/canadian-antimicrobial-resistance-surveillance-system-report-2016.html . Accessed on May 18, 2017
  • 28 Ahmed NH, Hussain T, Biswal I. Antimicrobial resistance of bacterial isolates from respiratory secretions of ventilated patients in a multi-specialty hospital. Avicenna J Med 2015; 5 (03) 74-78
  • 29 Wilke M, Grube R. Update on management options in the treatment of nosocomial and ventilator assisted pneumonia: review of actual guidelines and economic aspects of therapy. Infect Drug Resist 2013; 7: 1-7
  • 30 Donskey CJ. The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin Infect Dis 2004; 39 (02) 219-226
  • 31 Planquette B, Timsit JF, Misset BY. , et al; OUTCOMEREA Study Group. Pseudomonas aeruginosa ventilator-associated pneumonia. predictive factors of treatment failure. Am J Respir Crit Care Med 2013; 188 (01) 69-76
  • 32 Schubert AM, Sinani H, Schloss PD, Fraser CM. Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile . MBio 2015; 6 (04) e00974
  • 33 Castanheira M, Griffin MA, Deshpande LM, Mendes RE, Jones RN, Flamm RK. Detection of mcr-1 among Escherichia coli clinical isolates collected worldwide as part of the SENTRY Antimicrobial Surveillance Program in 2014 and 2015. Antimicrob Agents Chemother 2016; 60 (09) 5623-5624
  • 34 Baggs J, Fridkin SK, Pollack LA, Srinivasan A, Jernigan JA. Estimating National Trends in Inpatient Antibiotic Use Among US Hospitals From 2006 to 2012. JAMA Intern Med 2016; 176 (11) 1639-1648
  • 35 Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol 2016; 6: 1543
  • 36 Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science 2016; 352 (6285): 535-538
  • 37 Yayan J, Ghebremedhin B, Rasche K. Antibiotic resistance of Pseudomonas aeruginosa in pneumonia at a single university hospital center in Germany over a 10-year period. PLoS One 2015; 10 (10) e0139836
  • 38 Mauldin PD, Salgado CD, Hansen IS, Durup DT, Bosso JA. Attributable hospital cost and length of stay associated with health care-associated infections caused by antibiotic-resistant gram-negative bacteria. Antimicrob Agents Chemother 2010; 54 (01) 109-115
  • 39 Jacobs DM, Shaver A. Prevalence of and outcomes from Staphylococcus aureus pneumonia among hospitalized patients in the United States, 2009-2012. Am J Infect Control 2016; 45 (04) 404-409
  • 40 Hauser AR, Mecsas J, Moir DT. Beyond antibiotics: new therapeutic approaches for bacterial infections. Clin Infect Dis 2016; 63 (01) 89-95
  • 41 Chastre J, Luyt CE. Optimising the duration of antibiotic therapy for ventilator-associated pneumonia. Eur Respir Rev 2007; 16 (103) 40-44
  • 42 Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 2016; 535 (7610): 85-93
  • 43 Skinner C, Zhang G, Patfield S, He X. An in vitro combined antibiotic-antibody treatment eliminates toxicity from Shiga toxin-producing Escherichia coli. Antimicrob Agents Chemother 2015; 59 (09) 5435-5444
  • 44 Nau R, Eiffert H. Minimizing the release of proinflammatory and toxic bacterial products within the host: a promising approach to improve outcome in life-threatening infections. FEMS Immunol Med Microbiol 2005; 44 (01) 1-16
  • 45 Goscinski G, Lipcsey M, Eriksson M, Larsson A, Tano E, Sjölin J. Endotoxin neutralization and anti-inflammatory effects of tobramycin and ceftazidime in porcine endotoxin shock. Crit Care 2004; 8 (01) R35-R41
  • 46 Sellman BR, Stover CK. Antibodies for antibacterials. In: Miller AA, Miller PF. , eds. Emerging Trends in Antibacterial Discovery: Answering the Call to Arms. Norfolk, UK: Caister Academic Press; 2011: 345-366
  • 47 Vuong C, Yeh AJ, Cheung GY, Otto M. Investigational drugs to treat methicillin-resistant Staphylococcus aureus . Expert Opin Investig Drugs 2016; 25 (01) 73-93
  • 48 Sause WE, Buckley PT, Strohl WR, Lynch AS, Torres VJ. Antibody-based biologics and their promise to combat Staphylococcus aureus infections. Trends Pharmacol Sci 2016; 37 (03) 231-241
  • 49 Oleksiewicz MB, Nagy G, Nagy E. Anti-bacterial monoclonal antibodies: back to the future?. Arch Biochem Biophys 2012; 526 (02) 124-131
  • 50 Lipsitch M, Siber GR. How can vaccines contribute to solving the antimicrobial resistance problem?. MBio 2016; 7 (03) e00428-16
  • 51 Saylor C, Dadachova E, Casadevall A. Monoclonal antibody-based therapies for microbial diseases. Vaccine 2009; 27 (Suppl 6): G38-G46
  • 52 Yu XQ, Robbie GJ, Wu Y. , et al. Safety, tolerability, and pharmacokinetics of MEDI4893, an investigational, extended-half-life, anti-Staphylococcus aureus alpha-toxin human monoclonal antibody, in healthy adults. Antimicrob Agents Chemother 2016; 61 (01) e01020-16
  • 53 DiGiandomenico A, Sellman BR. Antibacterial monoclonal antibodies: the next generation?. Curr Opin Microbiol 2015; 27: 78-85
  • 54 Hua L, Cohen TS, Shi Y. , et al. MEDI4893 promotes survival and extends the antibiotic treatment window in a Staphylococcus aureus immunocompromised pneumonia model. Antimicrob Agents Chemother 2015; 59 (08) 4526-4532
  • 55 Henry BD, Neill DR, Becker KA. , et al. Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat Biotechnol 2015; 33 (01) 81-88
  • 56 Amara N, Krom BP, Kaufmann GF, Meijler MM. Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond. Chem Rev 2011; 111 (01) 195-208
  • 57 Paulander W, Nissen Varming A, Bæk KT, Haaber J, Frees D, Ingmer H. Antibiotic-mediated selection of quorum-sensing-negative Staphylococcus aureus . MBio 2013; 3 (06) e00459-e12
  • 58 Tal-Gan Y, Ivancic M, Cornilescu G, Blackwell HE. Characterization of structural elements in native autoinducing peptides and non-native analogues that permit the differential modulation of AgrC-type quorum sensing receptors in Staphylococcus aureus . Org Biomol Chem 2016; 14 (01) 113-121
  • 59 Guo Q, Wei Y, Xia B. , et al. Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa . Sci Rep 2016; 6: 19141
  • 60 François B. New targets for new therapeutic approaches. Crit Care 2014; 18 (06) 669
  • 61 Swatton JE, Davenport PW, Maunders EA, Griffin JL, Lilley KS, Welch M. Impact of azithromycin on the quorum sensing-controlled proteome of Pseudomonas aeruginosa . PLoS One 2016; 11 (01) e0147698
  • 62 van Delden C, Köhler T, Brunner-Ferber F, François B, Carlet J, Pechère JC. Azithromycin to prevent Pseudomonas aeruginosa ventilator-associated pneumonia by inhibition of quorum sensing: a randomized controlled trial. Intensive Care Med 2012; 38 (07) 1118-1125
  • 63 Starkey M, Lepine F, Maura D. , et al. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog 2014; 10 (08) e1004321
  • 64 Kizaki H, Omae Y, Tabuchi F, Saito Y, Sekimizu K, Kaito C. Cell surface phenol-soluble modulins regulate Staphylococcus aureus colony spreading. PLoS One 2016; 11 (10) e0164523
  • 65 Queck SY, Khan BA, Wang R. , et al. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS Pathog 2009; 5 (07) e1000533
  • 66 Cheung GY, Joo HS, Chatterjee SS, Otto M. Phenol-soluble modulins--critical determinants of staphylococcal virulence. FEMS Microbiol Rev 2014; 38 (04) 698-719
  • 67 Ghafoor A, Hay ID, Rehm BH. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 2011; 77 (15) 5238-5246
  • 68 DiGiandomenico A, Warrener P, Hamilton M. , et al. Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide Psl by phenotypic screening. J Exp Med 2012; 209 (07) 1273-1287
  • 69 Hazenbos WL, Kajihara KK, Vandlen R. , et al. Novel staphylococcal glycosyltransferases SdgA and SdgB mediate immunogenicity and protection of virulence-associated cell wall proteins. PLoS Pathog 2013; 9 (10) e1003653
  • 70 Rentero Rebollo I, McCallin S, Bertoldo D, Entenza JM, Moreillon P, Heinis C. Development of potent and selective S. aureus sortase A inhibitors based on peptide macrocycles. ACS Med Chem Lett 2016; 7 (06) 606-611
  • 71 Aridis Pharmaceuticals Press Release. AR-301: fully human mAb against Staphylococcus aureus. Available at: http://www.aridispharma.com/ar301.html . Accessed March 16, 2017
  • 72 Oganesyan V, Peng L, Damschroder MM. , et al. Mechanisms of neutralization of a human anti-α-toxin antibody. J Biol Chem 2014; 289 (43) 29874-29880
  • 73 Tabor DE, Yu L, Mok H. , et al. Staphylococcus aureus alpha-toxin is conserved among diverse hospital respiratory isolates collected from a global surveillance study and is neutralized by monoclonal antibody MEDI4893. Antimicrob Agents Chemother 2016; 60 (09) 5312-5321
  • 74 Sharma-Kuinkel BK, Wu Y, Tabor DE. , et al. Characterization of alpha-toxin hla gene variants, alpha-toxin expression levels, and levels of antibody to alpha-toxin in hemodialysis and postsurgical patients with Staphylococcus aureus bacteremia. J Clin Microbiol 2015; 53 (01) 227-236
  • 75 François B, Chastre J, Eggiman P. , et al; The SAATELLITE and EVADE Clinical Studies Within the COMBACTE Consortium. The SAATELLITE and EVADE Clinical Studies Within the COMBACTE Consortium: a public-private collaborative effort in designing and performing clinical trials for novel antibacterial drugs to prevent nosocomial pneumonia. Clin Infect Dis 2016; 63 (Suppl 2): S46-S51
  • 76 Rouha H, Badarau A, Visram ZC. , et al. Five birds, one stone: neutralization of α-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. MAbs 2015; 7 (01) 243-254
  • 77 Diep BA, Le VT, Visram ZC. , et al. Improved protection in a rabbit model of community-associated methicillin-resistant Staphylococcus aureus necrotizing pneumonia upon neutralization of leukocidins in addition to alpha-hemolysin. Antimicrob Agents Chemother 2016; 60 (10) 6333-6340
  • 78 Arsanis. Programs & pipeline. Available at: http://www.arsanis.com/programs-pipeline . Accessed March 16, 2017
  • 79 XBiotech. S. aureus (Staphylococcus aureus ). Available at: http://xbiotech.com/clinical/s-aureus.php . Accessed March 16, 2017
  • 80 Huynh T, Stecher M, McKinnon J, Jung N, Rupp ME. Safety and tolerability of 514G3, a true human anti-protein A monoclonal antibody for the treatment of S. aureus bacteremia. Open Forum Infect Dis 2016; 3 (Suppl 1): 1354
  • 81 François B, Luyt CE, Dugard A. , et al. Safety and pharmacokinetics of an anti-PcrV PEGylated monoclonal antibody fragment in mechanically ventilated patients colonized with Pseudomonas aeruginosa: a randomized, double-blind, placebo-controlled trial. Crit Care Med 2012; 40 (08) 2320-2326
  • 82 KaloBios Pharmaceuticals Press Release. KaloBios reports top-line data for phase 2 study of KB001-A to treat Pseudomonas aeruginosa lung infections in cystic fibrosis patients. 2015 . Available at: http://content.equisolve.net/kalobios/news/2015-01-06_KaloBios_Reports_Top_Line_Data_for_Phase_2_Study_52.pdf . Accessed March 16, 2017
  • 83 Warrener P, Varkey R, Bonnell JC. , et al. A novel anti-PcrV antibody providing enhanced protection against Pseudomonas aeruginosa in multiple animal infection models. Antimicrob Agents Chemother 2014; 58 (08) 4384-4391
  • 84 DiGiandomenico A, Keller AE, Gao C. , et al. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa . Sci Transl Med 2014; 6 (262) 262ra155
  • 85 Aridis Pharmaceuticals Press Release. Aridis Pharmaceuticals reports positive clinical data from phase 1/2 study of human monoclonal antibody AR-301 for treating pneumonia. 2017 . Available at: http://www.aridispharma.com/Aridis%20-%20AR301%20data%20-%201.4.16.pdf . Accessed March 16, 2017
  • 86 Lazar H, Horn MP, Zuercher AW. , et al. Pharmacokinetics and safety profile of the human anti-Pseudomonas aeruginosa serotype O11 immunoglobulin M monoclonal antibody KBPA-101 in healthy volunteers. Antimicrob Agents Chemother 2009; 53 (08) 3442-3446
  • 87 Que YA, Lazar H, Wolff M. , et al. Assessment of panobacumab as adjunctive immunotherapy for the treatment of nosocomial Pseudomonas aeruginosa pneumonia. Eur J Clin Microbiol Infect Dis 2014; 33 (10) 1861-1867
  • 88 Schuch R, Lee HM, Schneider BC. , et al. Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J Infect Dis 2014; 209 (09) 1469-1478
  • 89 Cassino C, Murphy MG, Boyle J, Rotolo J, Wittekind M. Results of the first in human study of lysin CF-301 evaluating the safety, tolerability and pharmacokinetic profile in healthy volunteers. . Eposter EVLB62. Paper presented at the European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). Amsterdam, The Netherlands; 2016
  • 90 Jun SY, Jung GM, Yoon SJ. , et al. Preclinical safety evaluation of intravenously administered SAL200 containing the recombinant phage endolysin SAL-1 as a pharmaceutical ingredient. Antimicrob Agents Chemother 2014; 58 (04) 2084-2088
  • 91 Wright A, Hawkins CH, Anggård EE, Harper DR. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 2009; 34 (04) 349-357
  • 92 Pherecydes Pharma. Bacteriophages, a promising [sic] therapy. 2017 . Available at: http://www.pherecydes-pharma.com/pneumophage.html . Accessed March 16, 2017
  • 93 Micek ST, Wunderink RG, Kollef MH. , et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care 2015; 19: 219
  • 94 Huang ZG, Zheng XZ, Guan J, Xiao SN, Zhuo C. Direct detection of methicillin-resistant Staphylococcus aureus in sputum specimens from patients with hospital-associated pneumonia using a novel multilocus PCR assay. Pathogens 2015; 4 (02) 199-209
  • 95 Koch H, Emrich T, Jampen S. , et al. Development of a 4-valent genotyping assay for direct identification of the most frequent Pseudomonas aeruginosa serotypes from respiratory specimens of pneumonia patients. J Med Microbiol 2014; 63 (Pt 4): 508-517
  • 96 Metzger S, Frobel RA, Dunne Jr WM. Rapid simultaneous identification and quantitation of Staphylococcus aureus and Pseudomonas aeruginosa directly from bronchoalveolar lavage specimens using automated microscopy. Diagn Microbiol Infect Dis 2014; 79 (02) 160-165
  • 97 Dennesen PJ, van der Ven AJ, Kessels AG, Ramsay G, Bonten MJ. Resolution of infectious parameters after antimicrobial therapy in patients with ventilator-associated pneumonia. Am J Respir Crit Care Med 2001; 163 (06) 1371-1375
  • 98 Kong C, Neoh HM, Nathan S. Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins (Basel) 2016; 8 (03) E72
  • 99 Painter KL, Krishna A, Wigneshweraraj S, Edwards AM. What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia?. Trends Microbiol 2014; 22 (12) 676-685
  • 100 Houston P, Rowe SE, Pozzi C, Waters EM, O'Gara JP. Essential role for the major autolysin in the fibronectin-binding protein-mediated Staphylococcus aureus biofilm phenotype. Infect Immun 2011; 79 (03) 1153-1165
  • 101 Kipnis E, Sawa T, Wiener-Kronish J. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med Mal Infect 2006; 36 (02) 78-91
  • 102 Tkaczyk C, Hamilton MM, Sadowska A. , et al. Targeting alpha toxin and ClfA with a multimechanistic monoclonal-antibody-based approach for prophylaxis of serious Staphylococcus aureus disease. MBio 2016; 7 (03) e00528-16
  • 103 Lehar SM, Pillow T, Xu M. , et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus . Nature 2015; 527 (7578): 323-328
  • 104 Adhikari RP, Kort T, Shulenin S. , et al. Antibodies to S. aureus LukS-PV attenuated subunit vaccine neutralize a broad spectrum of canonical and non-canonical bicomponent leukotoxin pairs. PLoS One 2015; 10 (09) e0137874
  • 105 Adhikari RP, Kort T, Shulenin S. , et al. Correction: antibodies to S. aureus LukS-PV attenuated subunit vaccine neutralize a broad spectrum of canonical and non-canonical bicomponent leukotoxin pairs. PLoS One 2015; 10 (11) e0143493
  • 106 Varrone JJ, de Mesy Bentley KL, Bello-Irizarry SN. , et al. Passive immunization with anti-glucosaminidase monoclonal antibodies protects mice from implant-associated osteomyelitis by mediating opsonophagocytosis of Staphylococcus aureus megaclusters. J Orthop Res 2014; 32 (10) 1389-1396
  • 107 Sully EK, Whaley K, Bohorova N. , et al. A tripartite cocktail of chimeric monoclonal antibodies passively protects mice against ricin, staphylococcal enterotoxin B and Clostridium perfringens epsilon toxin. Toxicon 2014; 92: 36-41
  • 108 van den Berg S, Bonarius HP, van Kessel KP. , et al. A human monoclonal antibody targeting the conserved staphylococcal antigen IsaA protects mice against Staphylococcus aureus bacteremia. Int J Med Microbiol 2015; 305 (01) 55-64
  • 109 Vasquez JK, Tal-Gan Y, Cornilescu G, Tyler KA, Blackwell HE. Simplified AIP-II peptidomimetics are potent inhibitors of Staphylococcus aureus AgrC quorum sensing receptors. ChemBioChem 2017; 18 (04) 413-423
  • 110 O'Rourke JP, Daly SM, Triplett KD, Peabody D, Chackerian B, Hall PR. Development of a mimotope vaccine targeting the Staphylococcus aureus quorum sensing pathway. PLoS One 2014; 9 (11) e111198
  • 111 Tetz G, Vikina D, Tetz V. Antimicrobial activity of mul-1867, a novel antimicrobial compound, against multidrug-resistant Pseudomonas aeruginosa . Ann Clin Microbiol Antimicrob 2016; 15: 19
  • 112 Papareddy P, Kasetty G, Kalle M. , et al. NLF20: an antimicrobial peptide with therapeutic potential against invasive Pseudomonas aeruginosa infection. J Antimicrob Chemother 2016; 71 (01) 170-180
  • 113 Manzo G, Scorciapino MA, Wadhwani P. , et al. Enhanced amphiphilic profile of a short β-stranded peptide improves its antimicrobial activity. PLoS One 2015; 10 (01) e0116379
  • 114 Scorciapino MA, Pirri G, Vargiu AV. , et al. A novel dendrimeric peptide with antimicrobial properties: structure-function analysis of SB056. Biophys J 2012; 102 (05) 1039-1048
  • 115 Gebauer M, Skerra A. Anticalins small engineered binding proteins based on the lipocalin scaffold. Methods Enzymol 2012; 503: 157-188
  • 116 Schmidt J, Patora-Komisarska K, Moehle K, Obrecht D, Robinson JA. Structural studies of β-hairpin peptidomimetic antibiotics that target LptD in Pseudomonas sp. Bioorg Med Chem 2013; 21 (18) 5806-5810