Semin Liver Dis 2017; 37(02): 175-188
DOI: 10.1055/s-0037-1602764
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Disorders in Hepatic Copper Secretion: Wilson's Disease and Pleomorphic Syndromes

Vasiliki Lalioti
1   Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
,
Akihito Tsubota
2   Division of Gastroenterology and Hepatology, Institute of Clinical Medicine and Research (ICMR), Jikei University School of Medicine, Kashiwa, Chiba, Japan
,
Ignacio V. Sandoval
1   Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
› Author Affiliations
Further Information

Publication History

Publication Date:
31 May 2017 (online)

Abstract

Wilson's disease (WD) is a rare disease the prevalence of which is higher than previously thought. Caused by genetic variations that target the copper (Cu) transporting P-ATPase Atp7b and disrupt the elimination of Cu by the liver, Atp7b truncations are associated with early severe liver disease and missense mutations with the late presentation of neurologic disorders. The asymptomatic initiation and false unimportance of initial symptoms often delays the crucial early diagnosis and a treatment that is lifesaving. The occasional acute liver failure persistently threatens the life of patients with WD. The gravity and progression of the disease are strongly dependent on the genetic background that organizes the response to the oxidative damage produced by the raised levels of free Cu. In this review, the authors focus on the prevalence, genetics, pathogenesis, clinical presentation, and treatment options in WD. They also discuss the new association of cuprotoxicosis with pleomorphic syndromes, of which MEDNIK is the first example, produced by genetic variations that disrupt the universal mechanisms of protein transport and thus perturb the traffic of Atp7b linked to Cu excretion.

 
  • References

  • 1 McCord JM, Day Jr ED. Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett 1978; 86 (01) 139-142
  • 2 Predki PF, Sarkar B. Metal replacement in “zinc finger” and its effect on DNA binding. Environ Health Perspect 1994; 102 (Suppl. 03) 195-198
  • 3 Compston A. Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver, by S. A. Kinnier Wilson, (From the National Hospital, and the Laboratory of the National Hospital, Queen Square, London) Brain 1912: 34; 295-509. Brain 2009; 132 (Pt 8): 1997-2001
  • 4 Tanzi RE, Petrukhin K, Chernov I. , et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 1993; 5 (04) 344-350
  • 5 Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 1993; 5 (04) 327-337
  • 6 Coffey AJ, Durkie M, Hague S. , et al. A genetic study of Wilson's disease in the United Kingdom. Brain 2013; 136 (Pt 5): 1476-1487
  • 7 Ohura T, Abukawa D, Shiraishi H. , et al. Pilot study of screening for Wilson disease using dried blood spots obtained from children seen at outpatient clinics. J Inherit Metab Dis 1999; 22 (01) 74-80
  • 8 Hahn SH, Lee SY, Jang YJ. , et al. Pilot study of mass screening for Wilson's disease in Korea. Mol Genet Metab 2002; 76 (02) 133-136
  • 9 Saito T. An assessment of efficiency in potential screening for Wilson's disease. J Epidemiol Community Health 1981; 35 (04) 274-280
  • 10 Scheinberg IH. Penicillamine in Wilson's disease. Lancet 1982; 1 (8287): 1469
  • 11 Thomas GR, Bull PC, Roberts EA, Walshe JM, Cox DW. Haplotype studies in Wilson disease. Am J Hum Genet 1994; 54 (01) 71-78
  • 12 Petrukhin K, Fischer SG, Pirastu M. , et al. Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nat Genet 1993; 5 (04) 338-343
  • 13 Thomas GR, Roberts EA, Walshe JM, Cox DW. Haplotypes and mutations in Wilson disease. Am J Hum Genet 1995; 56 (06) 1315-1319
  • 14 Thomas GR, Jensson O, Gudmundsson G, Thorsteinsson L, Cox DW. Wilson disease in Iceland: a clinical and genetic study. Am J Hum Genet 1995; 56 (05) 1140-1146
  • 15 Thomas GR, Forbes JR, Roberts EA, Walshe JM, Cox DW. The Wilson disease gene: spectrum of mutations and their consequences. Nat Genet 1995; 9 (02) 210-217
  • 16 Ferenci P. Regional distribution of mutations of the ATP7B gene in patients with Wilson disease: impact on genetic testing. Hum Genet 2006; 120 (02) 151-159
  • 17 Firneisz G, Lakatos PL, Szalay F, Polli C, Glant TT, Ferenci P. Common mutations of ATP7B in Wilson disease patients from Hungary. Am J Med Genet 2002; 108 (01) 23-28
  • 18 Caca K, Ferenci P, Kühn HJ. , et al. High prevalence of the H1069Q mutation in East German patients with Wilson disease: rapid detection of mutations by limited sequencing and phenotype-genotype analysis. J Hepatol 2001; 35 (05) 575-581
  • 19 Nanji MS, Nguyen VT, Kawasoe JH. , et al. Haplotype and mutation analysis in Japanese patients with Wilson disease. Am J Hum Genet 1997; 60 (06) 1423-1429
  • 20 Loudianos G, Dessì V, Lovicu M. , et al. Haplotype and mutation analysis in Greek patients with Wilson disease. Eur J Hum Genet 1998; 6 (05) 487-491
  • 21 Margarit E, Bach V, Gómez D. , et al. Mutation analysis of Wilson disease in the Spanish population -- identification of a prevalent substitution and eight novel mutations in the ATP7B gene. Clin Genet 2005; 68 (01) 61-68
  • 22 Loudianos G, Dessi V, Lovicu M. , et al. Molecular characterization of Wilson disease in the Sardinian population--evidence of a founder effect. Hum Mutat 1999; 14 (04) 294-303
  • 23 Gomes A, Dedoussis GV. Geographic distribution of ATP7B mutations in Wilson disease. Ann Hum Biol 2016; 43 (01) 1-8
  • 24 Gupta A, Aikath D, Neogi R. , et al. Molecular pathogenesis of Wilson disease: haplotype analysis, detection of prevalent mutations and genotype-phenotype correlation in Indian patients. Hum Genet 2005; 118 (01) 49-57
  • 25 Santhosh S, Shaji RV, Eapen CE. , et al. Genotype phenotype correlation in Wilson's disease within families--a report on four south Indian families. World J Gastroenterol 2008; 14 (29) 4672-4676
  • 26 Al Jumah M, Majumdar R, Al Rajeh S. , et al. A clinical and genetic study of 56 Saudi Wilson disease patients: identification of Saudi-specific mutations. Eur J Neurol 2004; 11 (02) 121-124
  • 27 Todorov T, Balakrishnan P, Savov A, Socha P, Schmidt HH. Intragenic deletions in ATP7B as an unusual molecular genetics mechanism of Wilson's disease pathogenesis. PLoS One 2016; 11 (12) e0168372
  • 28 Lee BH, Kim JH, Lee SY. , et al. Distinct clinical courses according to presenting phenotypes and their correlations to ATP7B mutations in a large Wilson's disease cohort. Liver Int 2011; 31 (06) 831-839
  • 29 Okada T, Shiono Y, Hayashi H. , et al. Mutational analysis of ATP7B and genotype-phenotype correlation in Japanese with Wilson's disease. Hum Mutat 2000; 15 (05) 454-462
  • 30 Chabik G, Litwin T, Członkowska A. Concordance rates of Wilson's disease phenotype among siblings. J Inherit Metab Dis 2014; 37 (01) 131-135
  • 31 Usta J, Wehbeh A, Rida K. , et al. Phenotype-genotype correlation in Wilson disease in a large Lebanese family: association of c.2299insC with hepatic and of p. Ala1003Thr with neurologic phenotype. PLoS One 2014; 9 (11) e109727
  • 32 Velez-Pardo C, Rio MJ, Moreno S, Ramírez-Gomez L, Correa G, Lopera F. New mutation (T1232P) of the ATP-7B gene associated with neurologic and neuropsychiatric dominance onset of Wilson's disease in three unrelated Colombian kindred. Neurosci Lett 2004; 367 (03) 360-364
  • 33 Stapelbroek JM, Bollen CW, van Amstel JK. , et al. The H1069Q mutation in ATP7B is associated with late and neurologic presentation in Wilson disease: results of a meta-analysis. J Hepatol 2004; 41 (05) 758-763
  • 34 Wilson DC, Phillips MJ, Cox DW, Roberts EA. Severe hepatic Wilson's disease in preschool-aged children. J Pediatr 2000; 137 (05) 719-722
  • 35 Houwen RH, Roberts EA, Thomas GR, Cox DW. DNA markers for the diagnosis of Wilson disease. J Hepatol 1993; 17 (03) 269-276
  • 36 Wu ZY, Wang N, Lin MT, Fang L, Murong SX, Yu L. Mutation analysis and the correlation between genotype and phenotype of Arg778Leu mutation in chinese patients with Wilson disease. Arch Neurol 2001; 58 (06) 971-976
  • 37 Panagiotakaki E, Tzetis M, Manolaki N. , et al. Genotype-phenotype correlations for a wide spectrum of mutations in the Wilson disease gene (ATP7B). Am J Med Genet A 2004; 131 (02) 168-173
  • 38 Duc HH, Hefter H, Stremmel W. , et al. His1069Gln and six novel Wilson disease mutations: analysis of relevance for early diagnosis and phenotype. Eur J Hum Genet 1998; 6 (06) 616-623
  • 39 Houwen RH, Juyn J, Hoogenraad TU, Ploos van Amstel JK, Berger R. H714Q mutation in Wilson disease is associated with late, neurological presentation. J Med Genet 1995; 32 (06) 480-482
  • 40 Miyata M, Smith JD. Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat Genet 1996; 14 (01) 55-61
  • 41 Welsh-Bohmer KA, Gearing M, Saunders AM, Roses AD, Mirra S. Apolipoprotein E genotypes in a neuropathological series from the consortium to establish a registry for Alzheimer's disease. Ann Neurol 1997; 42 (03) 319-325
  • 42 Alberts MJ, Graffagnino C, McClenny C. , et al. ApoE genotype and survival from intracerebral haemorrhage. Lancet 1995; 346 (8974): 575
  • 43 Schiefermeier M, Kollegger H, Madl C. , et al. The impact of apolipoprotein E genotypes on age at onset of symptoms and phenotypic expression in Wilson's disease. Brain 2000; 123 (Pt 3): 585-590
  • 44 Gromadzka G, Rudnicka M, Chabik G, Przybyłkowski A, Członkowska A. Genetic variability in the methylenetetrahydrofolate reductase gene (MTHFR) affects clinical expression of Wilson's disease. J Hepatol 2011; 55 (04) 913-919
  • 45 Hamilton JP, Koganti L, Muchenditsi A. , et al. Activation of liver X receptor/retinoid X receptor pathway ameliorates liver disease in Atp7B(-/-) (Wilson disease) mice. Hepatology 2016; 63 (06) 1828-1841
  • 46 Haywood S, Boursnell M, Loughran MJ. , et al. Copper toxicosis in non-COMMD1 Bedlington terriers is associated with metal transport gene ABCA12. J Trace Elem Med Biol 2016; 35: 83-89
  • 47 Fu Y, Mukhamedova N, Ip S. , et al. ABCA12 regulates ABCA1-dependent cholesterol efflux from macrophages and the development of atherosclerosis. Cell Metab 2013; 18 (02) 225-238
  • 48 Klomp AE, van de Sluis B, Klomp LW, Wijmenga C. The ubiquitously expressed MURR1 protein is absent in canine copper toxicosis. J Hepatol 2003; 39 (05) 703-709
  • 49 Phillips-Krawczak CA, Singla A, Starokadomskyy P. , et al. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A. Mol Biol Cell 2015; 26 (01) 91-103
  • 50 de Bie P, van de Sluis B, Burstein E. , et al. Distinct Wilson's disease mutations in ATP7B are associated with enhanced binding to COMMD1 and reduced stability of ATP7B. Gastroenterology 2007; 133 (04) 1316-1326
  • 51 Roberts EA, Schilsky ML. ; American Association for Study of Liver Diseases (AASLD). Diagnosis and treatment of Wilson disease: an update. Hepatology 2008; 47 (06) 2089-2111
  • 52 Weiss KH, Runz H, Noe B. , et al. Genetic analysis of BIRC4/XIAP as a putative modifier gene of Wilson disease. J Inherit Metab Dis 2010; 33 (Suppl. 03) S233-S240
  • 53 European Association for Study of Liver. EASL clinical practice guidelines: Wilson's disease. J Hepatol 2012; 56 (03) 671-685
  • 54 Ferenci P, Caca K, Loudianos G. , et al. Diagnosis and phenotypic classification of Wilson disease. Liver Int 2003; 23 (03) 139-142
  • 55 Hurley LS, Keen CL, Lönnerdal B. Copper in fetal and neonatal development. Ciba Found Symp 1980; 79: 227-245
  • 56 Bingle CD, Epstein O, Srai SK, Gitlin JD. Hepatic caeruloplasmin-gene expression during development in the guinea-pig. Correlation with changes in hepatic copper metabolism. Biochem J 1991; 276 (Pt 3): 771-775
  • 57 Czlonkowska A. A study of haemolysis in Wilson's disease. J Neurol Sci 1972; 16 (03) 303-314
  • 58 Gow PJ, Smallwood RA, Angus PW, Smith AL, Wall AJ, Sewell RB. Diagnosis of Wilson's disease: an experience over three decades. Gut 2000; 46 (03) 415-419
  • 59 Steindl P, Ferenci P, Dienes HP. , et al. Wilson's disease in patients presenting with liver disease: a diagnostic challenge. Gastroenterology 1997; 113 (01) 212-218
  • 60 Sánchez-Albisua I, Garde T, Hierro L. , et al. A high index of suspicion: the key to an early diagnosis of Wilson's disease in childhood. J Pediatr Gastroenterol Nutr 1999; 28 (02) 186-190
  • 61 Giacchino R, Marazzi MG, Barabino A. , et al. Syndromic variability of Wilson's disease in children. Clinical study of 44 cases. Ital J Gastroenterol Hepatol 1997; 29 (02) 155-161
  • 62 Frommer D, Morris J, Sherlock S, Abrams J, Newman S. Kayser-Fleischer-like rings in patients without Wilson's disease. Gastroenterology 1977; 72 (06) 1331-1335
  • 63 Polson RJ, Rolles K, Calne RY, Williams R, Marsden D. Reversal of severe neurological manifestations of Wilson's disease following orthotopic liver transplantation. Q J Med 1987; 64 (244) 685-691
  • 64 van Wassenaer-van Hall HN, van den Heuvel AG, Algra A, Hoogenraad TU, Mali WP. Wilson disease: findings at MR imaging and CT of the brain with clinical correlation. Radiology 1996; 198 (02) 531-536
  • 65 Hitoshi S, Iwata M, Yoshikawa K. Mid-brain pathology of Wilson's disease: MRI analysis of three cases. J Neurol Neurosurg Psychiatry 1991; 54 (07) 624-626
  • 66 Parekh JR, Agrawal PR. Wilson's disease: ‘face of giant panda’ and ‘trident’ signs together. Oxf Med Case Rep 2014; 20 (14) 16-17
  • 67 Walshe JM. The liver in Wilson's disease. In: Schiff L. , Schiffer, eds. Diseases of the Liver. 6th ed. Philadelphia: Lippincott; 1987: 1037-1050
  • 68 Okada T, Shiono Y, Kaneko Y. , et al. High prevalence of fulminant hepatic failure among patients with mutant alleles for truncation of ATP7B in Wilson's disease. Scand J Gastroenterol 2010; 45 (10) 1232-1237
  • 69 Scheinberg IH, Jaffe ME, Sternlieb I. The use of trientine in preventing the effects of interrupting penicillamine therapy in Wilson's disease. N Engl J Med 1987; 317 (04) 209-213
  • 70 Reuben A, Tillman H, Fontana RJ. , et al. Outcomes in adults with acute liver failure between 1998 and 2013: an observational cohort study. Ann Intern Med 2016; 164 (11) 724-732
  • 71 Walshe JM, Dixon AK. Dangers of non-compliance in Wilson's disease. Lancet 1986; 1 (8485): 845-847
  • 72 Eisenbach C, Sieg O, Stremmel W, Encke J, Merle U. Diagnostic criteria for acute liver failure due to Wilson disease. World J Gastroenterol 2007; 13 (11) 1711-1714
  • 73 Korman JD, Volenberg I, Balko J. , et al; Pediatric and Adult Acute Liver Failure Study Groups. Screening for Wilson disease in acute liver failure: a comparison of currently available diagnostic tests. Hepatology 2008; 48 (04) 1167-1174
  • 74 Weiss KH, Gotthardt DN, Klemm D. , et al. Zinc monotherapy is not as effective as chelating agents in treatment of Wilson disease. Gastroenterology 2011; 140 (04) 1189-1198.e1
  • 75 Walshe JM. Wilson's disease; new oral therapy. Lancet 1956; 270 (6906): 25-26
  • 76 Walshe JM. Treatment of Wilson's disease with trientine (triethylene tetramine) dihydrochloride. Lancet 1982; 1 (8273): 643-647
  • 77 Weiss KH, Thurik F, Gotthardt DN. , et al; EUROWILSON Consortium Efficacy and safety of oral chelators in treatment of patients with Wilson disease. Clin Gastroenterol Hepatol 2013; 11 (08) 1028-35.e1 , 2
  • 78 Iorio R, D'Ambrosi M, Marcellini M. , et al; Hepatology Committee of Italian Society of Paediatric Gastroenterology Hepatology and Nutrition. Serum transaminases in children with Wilson's disease. J Pediatr Gastroenterol Nutr 2004; 39 (04) 331-336
  • 79 Weiss KH, Stremmel W. Evolving perspectives in Wilson disease: diagnosis, treatment and monitoring. Curr Gastroenterol Rep 2012; 14 (01) 1-7
  • 80 Stuerenburg HJ. CSF copper concentrations, blood-brain barrier function, and coeruloplasmin synthesis during the treatment of Wilson's disease. J Neural Transm (Vienna) 2000; 107 (03) 321-329
  • 81 Brewer GJ, Askari F, Lorincz MT. , et al. Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine in a double-blind study of treatment of the neurologic presentation of Wilson disease. Arch Neurol 2006; 63 (04) 521-527
  • 82 Oestreicher P, Cousins RJ. Copper and zinc absorption in the rat: mechanism of mutual antagonism. J Nutr 1985; 115 (02) 159-166
  • 83 Ferenci P. Wilson disease. Indian J Gastroenterol 2001; 20 (Suppl. 01) C71-C78
  • 84 Chen JC, Chuang CH, Wang JD, Wang CW. combination therapy using chelating agent and zinc for Wilson's disease. J Med Biol Eng 2015; 35 (06) 697-708
  • 85 Brewer GJ, Hedera P, Kluin KJ. , et al. Treatment of Wilson disease with ammonium tetrathiomolybdate: III. Initial therapy in a total of 55 neurologically affected patients and follow-up with zinc therapy. Arch Neurol 2003; 60 (03) 379-385
  • 86 Brewer GJ. Zinc and tetrathiomolybdate for the treatment of Wilson's disease and the potential efficacy of anticopper therapy in a wide variety of diseases. Metallomics 2009; 1 (03) 199-206
  • 87 Brewer GJ, Dick RD, Yuzbasiyan-Gurkin V, Tankanow R, Young AB, Kluin KJ. Initial therapy of patients with Wilson's disease with tetrathiomolybdate. Arch Neurol 1991; 48 (01) 42-47
  • 88 Wapnir RA. Copper absorption and bioavailability. Am J Clin Nutr 1998; 67 (5, Suppl) 1054S-1060S
  • 89 Durand F, Bernuau J, Giostra E. , et al. Wilson's disease with severe hepatic insufficiency: beneficial effects of early administration of D-penicillamine. Gut 2001; 48 (06) 849-852
  • 90 Harada M. Management for acute liver failure of Wilson disease: indication for liver transplantation. Hepatol Res 2016
  • 91 Dhawan A, Taylor RM, Cheeseman P, De Silva P, Katsiyiannakis L, Mieli-Vergani G. Wilson's disease in children: 37-year experience and revised King's score for liver transplantation. Liver Transpl 2005; 11 (04) 441-448
  • 92 Nazer H, Ede RJ, Mowat AP, Williams R. Wilson's disease: clinical presentation and use of prognostic index. Gut 1986; 27 (11) 1377-1381
  • 93 Petrasek J, Jirsa M, Sperl J. , et al. Revised King's College score for liver transplantation in adult patients with Wilson's disease. Liver Transpl 2007; 13 (01) 55-61
  • 94 Schilsky ML. Liver transplantation for Wilson's disease. Ann N Y Acad Sci 2014; 1315: 45-49
  • 95 Murillo O, Luqui DM, Gazquez C. , et al. Long-term metabolic correction of Wilson's disease in a murine model by gene therapy. J Hepatol 2016; 64 (02) 419-426
  • 96 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337 (6096): 816-821
  • 97 Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 2012; 109 (39) E2579-E2586
  • 98 Patel M. Targeting oxidative stress in central nervous system disorders. Trends Pharmacol Sci 2016; 37 (09) 768-778
  • 99 Tsubota A, Yoshikawa T, Nariai K. , et al. Bovine lactoferrin potently inhibits liver mitochondrial 8-OHdG levels and retrieves hepatic OGG1 activities in Long-Evans Cinnamon rats. J Hepatol 2008; 48 (03) 486-493
  • 100 Schaefer M, Hopkins RG, Failla ML, Gitlin JD. Hepatocyte-specific localization and copper-dependent trafficking of the Wilson's disease protein in the liver. Am J Physiol 1999; 276 (3 Pt 1): G639-G646
  • 101 Dmitriev OY, Bhattacharjee A, Nokhrin S, Uhlemann EM, Lutsenko S. Difference in stability of the N-domain underlies distinct intracellular properties of the E1064A and H1069Q mutants of copper-transporting ATPase ATP7B. J Biol Chem 2011; 286 (18) 16355-16362
  • 102 Gupta A, Bhattacharjee A, Dmitriev OY. , et al. Cellular copper levels determine the phenotype of the Arg875 variant of ATP7B/Wilson disease protein. Proc Natl Acad Sci U S A 2011; 108 (13) 5390-5395
  • 103 Braiterman L, Nyasae L, Leves F, Hubbard AL. Critical roles for the COOH terminus of the Cu-ATPase ATP7B in protein stability, trans-Golgi network retention, copper sensing, and retrograde trafficking. Am J Physiol Gastrointest Liver Physiol 2011; 301 (01) G69-G81
  • 104 Lalioti V, Hernandez-Tiedra S, Sandoval IV. DKWSLLL, a versatile DXXXLL-type signal with distinct roles in the Cu(+)-regulated trafficking of ATP7B. Traffic 2014; 15 (08) 839-860
  • 105 Beare JM, Nevin NC, Froggatt P, Kernohan DC, Allen IV. Atypical erythrokeratoderma with deafness, physical retardation and peripheral neuropathy. Br J Dermatol 1972; 87 (04) 308-314
  • 106 Saba TG, Montpetit A, Verner A. , et al. An atypical form of erythrokeratodermia variabilis maps to chromosome 7q22. Hum Genet 2005; 116 (03) 167-171
  • 107 Martinelli D, Travaglini L, Drouin CA. , et al. MEDNIK syndrome: a novel defect of copper metabolism treatable by zinc acetate therapy. Brain 2013; 136 (Pt 3): 872-881
  • 108 Montpetit A, Côté S, Brustein E. , et al. Disruption of AP1S1, causing a novel neurocutaneous syndrome, perturbs development of the skin and spinal cord. PLoS Genet 2008; 4 (12) e1000296
  • 109 Bonnemaison ML, Bäck N, Duffy ME, Ralle M, Mains RE, Eipper BA. Adaptor protein-1 complex affects the endocytic trafficking and function of peptidylglycine α-amidating monooxygenase, a luminal cuproenzyme. J Biol Chem 2015; 290 (35) 21264-21279
  • 110 Hodgkinson VL, Dale JM, Garcia ML. , et al. X-linked spinal muscular atrophy in mice caused by autonomous loss of ATP7A in the motor neuron. J Pathol 2015; 236 (02) 241-250
  • 111 Kennerson ML, Nicholson GA, Kaler SG. , et al. Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. Am J Hum Genet 2010; 86 (03) 343-352
  • 112 Lalioti V, Peiró R, Pérez-Berlanga M. , et al. Basolateral sorting and transcytosis define the Cu+-regulated translocation of ATP7B to the bile canaliculus. J Cell Sci 2016; 129 (11) 2190-2201
  • 113 Nyasae LK, Schell MJ, Hubbard AL. Copper directs ATP7B to the apical domain of hepatic cells via basolateral endosomes. Traffic 2014; 15 (12) 1344-1365
  • 114 Stuehler B, Reichert J, Stremmel W, Schaefer M. Analysis of the human homologue of the canine copper toxicosis gene MURR1 in Wilson disease patients. J Mol Med (Berl) 2004; 82 (09) 629-634
  • 115 Vonk WI, Bartuzi P, de Bie P. , et al. Liver-specific Commd1 knockout mice are susceptible to hepatic copper accumulation. PLoS One 2011; 6 (12) e29183
  • 116 Donoso M, Cancino J, Lee J. , et al. Polarized traffic of LRP1 involves AP1B and SNX17 operating on Y-dependent sorting motifs in different pathways. Mol Biol Cell 2009; 20 (01) 481-497
  • 117 Braiterman L, Nyasae L, Guo Y, Bustos R, Lutsenko S, Hubbard A. Apical targeting and Golgi retention signals reside within a 9-amino acid sequence in the copper-ATPase, ATP7B. Am J Physiol Gastrointest Liver Physiol 2009; 296 (02) G433-G444
  • 118 Roelofsen H, Wolters H, Van Luyn MJ, Miura N, Kuipers F, Vonk RJ. Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion. Gastroenterology 2000; 119 (03) 782-793
  • 119 Schaefer M, Roelofsen H, Wolters H. , et al. Localization of the Wilson's disease protein in human liver. Gastroenterology 1999; 117 (06) 1380-1385
  • 120 Hernandez S, Tsuchiya Y, García-Ruiz JP. , et al. ATP7B copper-regulated traffic and association with the tight junctions: copper excretion into the bile. Gastroenterology 2008; 134 (04) 1215-1223
  • 121 Polishchuk EV, Concilli M, Iacobacci S. , et al. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev Cell 2014; 29 (06) 686-700
  • 122 Zatulovskaia YA, Ilyechova EY, Puchkova LV. The features of copper metabolism in the rat liver during development. PLoS One 2015; 10 (10) e0140797
  • 123 McMillan KJ, Gallon M, Jellett AP. , et al. Atypical parkinsonism-associated retromer mutant alters endosomal sorting of specific cargo proteins. J Cell Biol 2016; 214 (04) 389-399
  • 124 Vilariño-Güell C, Wider C, Ross OA. , et al. VPS35 mutations in Parkinson disease. Am J Hum Genet 2011; 89 (01) 162-167
  • 125 Zimprich A, Benet-Pagès A, Struhal W. , et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 2011; 89 (01) 168-175
  • 126 Sechi G, Antonio Cocco G, Errigo A. , et al. Three sisters with very-late-onset major depression and parkinsonism. Parkinsonism Relat Disord 2007; 13 (02) 122-125
  • 127 Johnson S. Is Parkinson's disease the heterozygote form of Wilson's disease: PD = 1/2 WD?. Med Hypotheses 2001; 56 (02) 171-173
  • 128 Lichtmannegger J, Leitzinger C, Wimmer R. , et al. Methanobactin reverses acute liver failure in a rat model of Wilson disease. J Clin Invest 2016; 126 (07) 2721-2735
  • 129 Tsivkovskii R, Efremov RG, Lutsenko S. The role of the invariant His-1069 in folding and function of the Wilson's disease protein, the human copper-transporting ATPase ATP7B. J Biol Chem 2003; 278 (15) 13302-13308